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The purpose of this analysis is to compare theoretical and experimental results to show why
and when the shallow-angle contact-point mirror kick system is effective. For background
information, illustrations, and more information, see my July '10 BD article.
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which can be solved (by eliminating d) to give:
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Cushion compression has an effect on the geometry, especially at faster speeds, but |
neglect this effects in the analysis. | am assuming the speed is slow enough to not
compress the cushion a significant amount. Also, the rebound path of the CB curves after
rebound, with this curve being delayed more with faster speed. The effect of curve delay
depends on how soon the CB hits the object after rebound. Because of this, | will compare
the results to experimental data of both immediate rebound angle off the rail and effective
rebound angle, after the CB is done curving.

Here is experimental data for rebound angle vs. incoming angle for a slow rolling CB with no
English (taken with Bob Jewett in Fort Collins, March, 2009)

10 5 3.5
20 10.5 8.4
30 23 16.9
40 37 25.2
Oej = 50 9€out_immed = 16 O€out_eff = 357
60 56 48.7
70 70 64.1
80 79.95 75.5

where 0e;, is the CB angle relative to the rail, 8e,; immeq IS the immediate rebound
angle off the rail (measured with the help of a high-speed video camera), and 6e, ; off is

the effective rebound angle as determined by where the CB hit a rail after rebound.

Here are values for the parameters for the system shots described in my July '10 BD article
(A: 1-ball shot, 1/2 ball off rail; B: 2-ball shot, full ball off rail; C: 3-ball shot, 1 1/2 ball off rail):

Ojp, == 5-deg,6-deg .. 45-deg
pp = 5-deg ppg = 7.5-deg ¢pc = 10-deg

mp:= D+ Resin(ep) mg:= (D +R) + Rsin(¢g)  mg = 2:D + Resin(ipc)

When | tested the three shots on my table, shot "A" was over cut for a wide range of angles

from 5 to 45 degrees, with the largest over-cut occurring at larger angles. Shot "B" was
successful over quite a large range (5 to 37 degrees), with over cut occurring at larger angles.
Shot "C" was under cut at smaller angles (5 to 25 degrees), and was over cut at larger angles
(35 to 45 degrees). The shot was successful in the mid range (between 25 and 35 degrees), but
the speed was critical.



Here are plots comparing the rebound angle predicted by the system to the actually experimental
data:

Shot "A" (the 1-ball shot) in the article
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Here, the actual rebound angles (from the experimental data) are larger than the angle
predicted by the system, which explains why this shot is typically over cut, and by a
wider margin at larger angles.

Shot "B" (the 2-ball shot) in the article
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Here, the actual rebound angles (from the experimental data) are closer to and mostly
bracket the angle predicted by the system over a wider range, which explains why the
system works quite well for this shot.



Shot "C" (the 3-ball shot) in the article
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Here, the actual rebound angles (from the experimental data) are smaller than the
angle predicted by the system at smaller approach angles, which explains why this
shot is typically under cut. At larger approach angles, the immediate rebound angle is
larger than predicted, explaining why the shot is over cut at larger angles.



