

technical proof

technical proof

 TP B.10
Draw shot cue elevation effects

supporting:
“The Illustrated Principles of Pool and Billiards”

 http://billiards.colostate.edu

by David G. Alciatore, PhD, PE ("Dr. Dave")

originally posted: 5/15/2009 last revision: 11/9/2023

Rvs

b

v0

0

ms

mb

vi

i

di+1

s

i

a) cue stick impact

b) CB bounce

vi+1

i+1

i+1

Ft

Fn

vi+1

i+1

The data and equations on this page are from TP B.9.

Relevant physical parameters:

R 1.125 in:= ball radius

bmax
R

2
:= generally accepted miscue limit

μs 0.2:= typical ball-cloth coefficient of sliding friction

mr
6

19
:= typical ball-mass-to-cue-mass ratio (mb/ms):

η 0.87:= typical cue tip efficiency

et 0.6:= typical ball-table coefficient of restitution

rps
rpm min

sec
:= revs per second

vs 12 mph:= typical fast cue speed

Speed and spin loss, and spin ratio, for a sliding CB (e.g., with a level-cue draw shot):

vdrag v x, () v
2

2 μs g x-:= ωdrag v ω, x, () ω
5

2 R
v v

2
2 μs g x--



-:=

drag_ratio v ω, x, ()
ωdrag v ω, x, () R

vdrag v x, ()
:=

CB speed and spin from cue speed (vs) and tip offset (b):

vCB vs b, () vs

1 η
1 η-

mr
1

5

2

b

R






2

+








-+

1 mr+
5

2

b

R






2

+








:= ωCB vs b, () 5

2
vCB vs b, ()

b

R
2

:=

Typical fast cue speed with near-maximum tip offset:

vs 15 mph:= b bmax 0.563 in=:=

Cue ball (CB) speed, spin, and angle after tip impact:

v
0

vCB vs b, () 11.194 mph=:= ω
0

ωCB vs b, () 34.841 rps=:=

NOTE - I will assume the cue tip delivers most of its impulse to the CB before any
significant force build up between the CB and the table (due to cloth compression and
rebound off the slate). This assumption is supported by HSV B.44 for modest cue
elevations.

On each bounce of the CB, including the first bounce after tip impact, the ball speed, spin, and
angle change according to impact-momentum principles. See the illustrations on the 1st page for
the terminology used.

The normal and tangential components of the incoming velocity are:

vn
i

v
i

sin θ
i()= vt

i
v
i

cos θ
i()=

After the bounce, the normal component is reduced according to the coefficient of restitution
between the ball and table:

vn
i 1+ et vn

i
= et v

i
 sin θ

i()=

The normal impulse corresponding to this momentum change is:

F'n mb vn
i

vn
i 1++()= mb 1 et+() sin θ

i() v
i

=

Assuming the ball still has backspin after rebound (i.e., ωi+1>0), the tangential impulse will be:

F't μs F'n= μs mb 1 et+() sin θ
i() v

i
=

This changes the tangential momentum, resulting in a post-rebound tangential speed of:

vt
i 1+ vt

i

F't

mb
-= v

i
cos θ

i() μs 1 et+() sin θ
i()- =

The total post-rebound speed is:

v
i 1+ vn

i 1+()2
vt

i 1+()2
+= v

i
et sin θ

i()()2
cos θ

i() μs 1 et+() sin θ
i()- 

2
+=

The tangential impulse also changes the angular momentum, resulting in a post-rebound spin of:

ω
i 1+ ω

i

F't R

I
-= ω

i

F't R

2

5
mb R

2


-= ω
i

5

2 R
μs 1 et+() sin θ

i() v
i

-=

The trajectory angle after the bounce is:

θ
i 1+ atan

vn
i 1+

vt
i 1+







= atan
et sin θ

i()

cos θ
i() μs 1 et+() sin θ

i()-







= atan
et

cot θ
i() μs 1 et+()-







=

From basic projectile motion, the distance covered in the air after the bounce is:

d
i 1+

v
i 1+()2

g
sin 2 θ

i 1+()=

Here's a program to calculate the CB spin and spin ratio at OB contact for a given cue
elevation and drag distance:

elev_draw_shot θs ddrag, () dtotal 0

θ
0

θs

i 0

"the CB hasn't reached the OB yet"

"drag with no more bounces"

x ddrag dtotal-

d
i 1+ x

v
i 1+ vdrag v

i
x, ()

ω
i 1+ ωdrag v

i
ω

i
, x, ()

θ
i 1+ 0

i i 1+

break

θ
i

0=()if

"otherwise, the CB will bounce"

vn
i 1+ et v

i
 sin θ

i()

vt
i 1+ v

i
cos θ

i() μs 1 et+() sin θ
i()- 

v
i 1+ vn

i 1+()2
vt

i 1+()2
+

ω
i 1+ ω

i
5

2 R
μs 1 et+() sin θ

i() v
i

-

"CB doesn't make it to the OB with draw"

v
i 1+ 0

ω
i 1+ 0

i i 1+

break

v
i 1+ 0<() ω

i 1+ 0<() if

θ
i 1+ atan

et

cot θ
i() μs 1 et+()-









d
i 1+

v
i 1+()2

g
sin 2 θ

i 1+()

dtotal dtotal d
i 1++

dtotal ddrag<()while

:=

i 1+

"assume the bouncing ceases"

θ
i 1+ 0

d
i 1+ 0.1 in<() θ

i 1+ 1 deg<() if

i i 1+

spin ω
i



ratio
ω

i
R

v
i

cos θ
i()



"return all calculated data"

i
d

ft

v

mph

ω

rps

θ

deg

spin

rps
ratio





T

Functions to extract spin and spin-to-speed ratio from the program results:

spin θs ddrag, () elev_draw_shot θs ddrag, ()5:= ratio θs ddrag, () elev_draw_shot θs ddrag, ()6:=

For a level cue, the program results are the same as for a drag shot:

θs 0 deg:= ddrag 2 ft:= spin θs ddrag, () 31.43= ratio θs ddrag, () 1.186=

ωdrag v
0
ω

0
, ddrag, () 31.43 rps= drag_ratio v

0
ω

0
, ddrag, () 1.186=

Here are some example data at a typical cue elevation and medium drag distance:

θs 5 deg:= ddrag 2 ft:= results elev_draw_shot θs ddrag, ():=

N results
0

7=:= number of bounces

db results
1

:= distances between bounces (in feet)

db
1

0.848= db
2

0.5= db
3

0.297= db
4

0.177= db
5

0.106=

vb results
2

:= ball speed after each bounce (in mph)

vb
1

10.855= vb
2

10.658= vb
3

10.542= vb
4

10.473= vb
5

10.432=

ωb results
3

:= ball spin after each bounce (in rps)

ωb
1

32.897= ωb
2

31.731= ωb
3

31.031= ωb
4

30.612= ωb
5

30.36=

θb results
4

:= ball bounce angle (in deg)

θb
1

3.091= θb
2

1.889= θb
3

1.145= θb
4

0.692= θb
5

0.417=

results
5

30.118= spin θs ddrag, () 30.118=

results
6

1.164= ratio θs ddrag, () 1.164=

Example data at higher cue elevation:

θs 12 deg:= ddrag 2 ft:= results elev_draw_shot θs ddrag, ():=

N results
0

2=:= number of bounces

db results
1

:= distances between bounces (in feet)

db
1

1.906= db
2

1.093=

vb results
2

:= ball speed after each bounce (in mph)

vb
1

10.3= vb
2

9.794=

ωb results
3

:= ball spin after each bounce (in rps)

ωb
1

30.205= ωb
2

27.423=

θb results
4

:= ball bounce angle (in deg)

θb
1

7.792= θb
2

4.908=

results
5

27.423= spin θs ddrag, () 27.423=

results
6

1.129= ratio θs ddrag, () 1.129=

Comparing elevated before-bounce and after-bounce spin and ratio to a level-cue drag shot:

original CB speed, spin, and spin ratio:

v
0

11.194 mph= ω
0

34.841 rps=
ω

0
R

v
0

1.25=

just before the second bounce: ddrag 1.905 ft:=

level cue: ωdrag v
0
ω

0
, ddrag, () 31.596 rps=

ωdrag v
0
ω

0
, ddrag, () R

vdrag v
0

ddrag, ()
1.189=

elevated cue: spin θs ddrag, () 30.205= ratio θs ddrag, () 1.189=

just after the second bounce: ddrag 1.907 ft:=

level cue: ωdrag v
0
ω

0
, ddrag, () 31.593 rps=

ωdrag v
0
ω

0
, ddrag, () R

vdrag v
0

ddrag, ()
1.189=

elevated cue: spin θs ddrag, () 27.423= ratio θs ddrag, () 1.129=

Now let's look at how spin and spin ratio vary with drag distance for a typical cue elevation,
as compared to a level-cue drag shot:

θs 5 deg:= ddrag 1 ft 1.1 ft, 4 ft..:=

1 2 3 4
26

28

30

32

34

spin θs ddrag, ()
ωdrag v0 ω0, ddrag, ()

rps

ddrag

ft

1 2 3 4
1.05

1.1

1.15

1.2

1.25

ratio θs ddrag, ()
drag_ratio v0 ω0, ddrag, ()

ddrag

ft

With a near level cue, there is little effect from the CB bouncing, and the CB doesn't bounce for
very long (see the small spikes in the curves on the left side of the graphs).

Now let's look at how spin and spin ratio vary with drag distance for an elevated cue,
as compared to a level-cue drag shot:

θs 15 deg:= ddrag 1 ft 1.1 ft, 4 ft..:=

1 2 3 4
22

24

26

28

30

32

34

spin θs ddrag, ()
ωdrag v0 ω0, ddrag, ()

rps

ddrag

ft

1 2 3 4
1.05

1.1

1.15

1.2

1.25

ratio θs ddrag, ()
drag_ratio v0 ω0, ddrag, ()

ddrag

ft

Notice how both the spin and the spin ratio take "hits" after each bounce, but don't change while the
CB is in airborne between the bounces.

Now let's look at how spin and spin ratio vary with cue elevation,
as compared to a level-cue drag shot:

θs 0 deg 1 deg, 30 deg..:= ddrag 2 ft:=

0 10 20 30
22

24

26

28

30

32

spin θs ddrag, ()
ωdrag v0 ω0, ddrag, ()

rps

θs

deg

0 10 20 30
1.12

1.14

1.16

1.18

1.2

1.22

ratio θs ddrag, ()
drag_ratio v0 ω0, ddrag, ()

θs

deg

The reasons for the spikes in the graphs above are related to the distances at which bounces occur
for different cue elevations. The following data explain the two spikes in the curves:

θs 9 deg:= results elev_draw_shot θs ddrag, ():= spin θs ddrag, () 29.259=

N results
0

2=:= d results
1

:= d
1

d
2

+ 2.331= ratio θs ddrag, () 1.157=

θs 10 deg:= results elev_draw_shot θs ddrag, ():= spin θs ddrag, () 28.645=

N results
0

2=:= d results
1

:= d
1

d
2

+ 2.561= ratio θs ddrag, () 1.147=

θs 15 deg:= results elev_draw_shot θs ddrag, ():= spin θs ddrag, () 29.069=

N results
0

1=:= d results
1

:= d
1

2.298= ratio θs ddrag, () 1.181=

θs 16 deg:= results elev_draw_shot θs ddrag, ():= spin θs ddrag, () 28.694=

N results
0

1=:= d results
1

:= d
1

2.419= ratio θs ddrag, () 1.179=

Conclusions from all of the analysis and graphs above:

Elevating the cue reduces the amount of CB spin at OB contact, resulting in less draw1.
distance (see TP B.8 for more info). The loss in spin is small for small cue elevations,
but increases with more elevation (for a given cue speed and tip offset).

Modest cue elevations (about 0-15 degrees) reduce the spin-to-speed ratio of the CB at2.
OB contact, resulting in "slower" draw (see TP B.9 for more info).

As you increase cue elevation above about 20 degrees, the spin-to-forward-speed ratio3.
increases, allowing for "quicker" draw (see TP B.9 for more info). An extreme example is
a highly elevated masse draw (pique) shot, where you create lots of backspin with very
little forward speed.

Sometimes cue elevation is required to clear over an obstacle ball, or to prevent a double hit
when there is a small gap between the CB and OB. And as noted above, with larger cue
elevations, better "quick draw" action can result. However, for maximum draw distance, a
level cue (or as close to level is possible) appears to be best.

