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This technical proof looks at the effects of ball-to-ball coefficient of
restitution (e) and friction (u) on the 90 degree rule derived in TP 3.1.
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NOTE: each ball is assumed to have equal mass (m)



Each ball has equal and opposite impulses in the normal (n) and tangential (t)
directions given by:

F,=|Fdr and F =[Fat

The change in momentum of each ball in the n direction is equal to the normal impulse:
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The change in momentum of each ball in the t direction is equal to the tangential impulse:
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The speed of separation in the n direction is less than the speed of approach
according to the coefficient of restitution (e):
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The initial speed components, from the figure above, are:
Vi =W S:II1 I:Q}J
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where ¢ is the cut angle.

From Equation 1, we can write:
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Using this in Equation 3, with Equation 5, gives:
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Substituting this back into Equation 1 gives:
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Using this in Equation 1, with Equation 5, gives:
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Now we know both post-impact normal speed components (Equations 7 and 9).
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The impulse in the t direction cannot reverse the direction of the relative tangential
speed and it cannot exceed that allowed by friction, so from TP A.14 (Equation 15):
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| want to thank Sorokin Alexander for pointing out an error in Equation 10 in the original version
of this document. The equation is now more accurate; although, the results below are
unchanged.
Using this in Equation 2, we can solve for the post-impact tangential speeds:
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So now we can determine the direction of each ball after impact, along with the
angle between their paths (see the "after impact" figure above):
6, = tan™ le = tan™ (- @) cos(¢) (13)
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Now putting the equations in MathCAD form and entering typical data:

e:=0.94 coefficient of restitution between balls
1:=0.06 average coefficient of friction between balls
¢:=30-deg half-ball hit
(( ([p-(1+e€)-cos (o) \) )
0,(e,p,d) ::angle! !2-sin(¢)—min!! E-Sin(qb) !!!,(1—6)-cos (qu)! (from Equation 13)
\ A7 1)) /
( ([p-(1+e€)-cos (o) \)
0,(e,pu,d):= angle!(1+e) -cos (o) ,mz’n” 2 s (4) !H (from Equation 14)
\ \L-—-7 1))
O(e,pu,¢):=90-deg—6,(e,p,d)—0,(e,u,) (from Equation 15)
With no inelasticity or friction:
91(1707¢):0 deg 92(1707¢):0 deg 9(1507¢):90 deg

This is the 90 degree rule result presented in TP 3.1.

With inelasticity only:

0,(e,0,¢$)=2.975 deg 0,(e,0,¢)=0 deg 0(e,0,¢)=87.025 deg

inelasticity "shortens" the cue ball angle

With friction only:
0,(1,1,9)=0 deg 0,(1,1,p)=3.434 deg 0(1,u,0)=286.566 deg

friction "shortens" the object ball angle (this is called "throw")

With inelasticity and friction:

0,(e,u,p)=3.307 deg 0,(e,u,)=3.434 deg 0(e,u,p)=83.259 deg

So the 90 degree rule is actually something less than the 90 degree rule.
e and p vary with shot speed and cut angle in practice; but in all cases,
the actual angle between the ball paths will be less than 90 degrees.



