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For a more detailed, and slightly different, coverage of squirt physics, see Ron
Shepard's 2001 paper:
"Everything you always wanted to know about cue ball squirt, but were afraid to ask ."
For more illustrations and basic explanations, see my August '07 instructional article.
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~ : forward impulse acting on the ball : squirt angle

S
~ : side (squirt) impulse acting on the ball C: point of contact

bmv: ball speed after impact : ball mass

em: ball angular speed after impact : shaft end effective mass
  ("endmass")

R: ball radius

b: tip offset  (Note - this is different from Shepard's "b")



Applying linear impulse and momentum principles to the ball in the x and y directions gives:
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Note that forces F and S are components resulting from both normal and friction forces acting
during the brief contact time t.  Because the tip grips the ball during contact, the friction force
is difficult to model directly.

Applying linear impulse and momentum principles to the shaft in the y direction gives:
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where me is the effective mass of the end of the shaft (i.e., the "endmass"), and v Cy is the speed

of the point of contact in the y direction.  Equations 2 and 4 suggest conservation of momentum
in the vertical direction.  The squirt momentum gained by the ball is balanced by cue stick
deflection in the opposite direction.  The effective mass is a function of geometry and material
properties of the end of the shaft.  It relates to how far the transverse elastic wave travels down
the shaft (from the tip) during the brief contact time between the tip and ball.  Experiments have
suggested that only the last 6 inches or so of the shaft (closest to the tip) contribute to end
mass.  This is why cue manufactures have been successful with reducing squirt by using a
smaller tip and shaft diameter, using a smaller and lighter ferrule, and drilling out the end of the
shaft, all to reduce the effective endmass.

It is important to note that Equation 4 assumes the tip grips the ball.  The tip is assumed to
remain in contact with the ball as the ball rotates (see HSV A.76a for visual evidence of how well a
chalked leather tip "grabs" the ball).  While the tip and ball are in contact, the velocity of the tip
and ball are equal at the point of contact.  The velocity of contact point C, at the end of the impact
period, can be written as:
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where, from the triangle in the figure above,
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so, from Equations 5 and 6, the vertical (y or j) component of the point-of-contact velocity is:
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Applying angular impulse and momentum principles to the ball gives: 
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where I is the mass moment of inertia of the ball (2/5 mbR2).

Substituting Equation 7 into Equation 4 and equating this to Equation 2 gives:
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Solving this equation for the cue ball angular speed gives:
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Substituting Equations 1, 2, and 10 into Equation 8 gives:

 







 





 Rcm

mmvs
RmvsmRcvcbm

e

eb
bbb

2

5

2 11( )

This equation can be rewritten as:

 




















e

b

m
m

c

c
R
b

c

s

1
5
2

tan
2







  12( )

Therefore, using Equation 6, the squirt angle can be related to the tip offset and shaft endmass
as:
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Below is a plot of squirt angle (in degrees) vs. offset factor (br = b/R) for the full range of

possible tip offsets (b = 0 to 0.5R) and for a typical range of ball-mass-to-endmass ratios (m r

= mb/me), covering everything from a break cue (large endmass and small mass ratio) to a

playing cue with a low-squirt shaft (small endmass and large mass ratio).
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The squirt angle is very close to a linear function of tip offset (i.e., the larger the
offset, the larger the squirt, by a proportional amount).



Below is a plot of squirt angle (in degrees) vs. ball-mass-to-endmass ratios (m r = mb/me) for

various amount of English (25%, 50%, 100%).
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Here is a plot of squirt (degrees) vs. endmass (grams) for different amounts of English:
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So it appears that squirt varies fairly linearly with effective endmass, so a certain
percentage change in endmass will create close to the same percentage change
in squirt.

Here is some example data for a 25% decrease in endmass:

high-squirt cue:
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