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The illustration below defines the pertinent terminology and shows how throw (throw) is

related to shot angle (shot) and cut angle ().  The cue ball has initial velocity vCB and final

velocity vCB', and the object ball has final velocity vOB'.  The cue ball is assumed to have pure

sidespin () at contact (i.e., stun shot). A goal is to limit the cue ball motion to the right (x
direction) while achieving the desired shot angle to the left.
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From TP A.5, the cue ball's final speed component in the normal (n) direction is:
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where e is the coefficient of restitution.

Also, the change in speed in the normal direction for both balls is related to the normal impulse
with:
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For given ball conditions, the cut angle and amount of English create a certain amount of throw
throw (see TP A.14).  The throw angle relates the tangential and normal speeds and impulses,

and can be expressed (from TP A.5) as:
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Therefore, using Equation 2, the change tangential speed of both balls can be expressed as:
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Therefore, the cue ball's final speed component in the tangential direction (see TP A.5) is:
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When the cut angle () is positive (i.e., in the same direction as the throw, as shown in figure
"a" above), both the cut angle and throw terms add to the tangential velocity.  When the cut
angle is negative (i.e., in the opposite direction from the throw, as shown in figure "b" above),
the cut-angle term subtracts from the throw portion of the tangential velocity.

For a cue-ball "hold" or "kill" shot, the goal is to have the cue ball move as little as possible to
the right (in the x direction).  A good measure for how much the cue ball moves to the right after
contact is the x-component of the velocity after contact.  I will refer to this as the cue-ball "drift
speed." It can be found from the n-t components, which are at angle  relative to the x-y axes:
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Likewise, the object ball velocity's x-component can be found with:
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For the remainder of the analysis, I will assume a perfectly elastic collision (i.e., e=1, which
isn't far from the typical value of about 0.94).  With this, the final cue ball drift speed can be
expressed from Equations 1, 5, and 6 as:

        throwCBCBx vv  tancossincos'  8( )

To compare the cue-ball hold-effectiveness of one shot vs. another, assuming the desired shot
angle (shot) is the same, it is useful to express the cue ball's final x-direction speed as a

percentage of the final object ball speed. The final object ball speed can be expressed as: 
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where the object ball's final n-t velocity components are given by Equations 2 and 4.  Again, for
e=1, this can be expressed as:
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Therefore, the hold effectiveness can now be measured with the following drift speed, expressed
as a percentage of the final object ball speed:
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Similarly, using Equations 2, 4, 7, and 11, the object-ball drift percentage can be expressed as:
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For a desired total shot angle shot, and for a given amount of throw throw, the required cut

angle is (see figure "a" above):
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where  is:
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Angle  can be found from the triangle shown to the left of figure "a" above.  The following two
equations relate the vertical and horizontal distances in the triangle:
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Solving Equations 15 and 16 for , using Equation 14 gives:
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So, from Equations 13, 14, and 17, the cut angle is related to the shot and throw angles with:
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To see if throw can be used to help kill cue ball motion for a shot with a required angle shot,

we can compare the cue ball's drift speed with throw to the drift speed without throw (e.g., if
gearing outside English is used, or if CIT is neglected).  With no throw (throw=0), using

Equations 11, 14, and 18, the drift-speed percentage can be expressed as:
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With throw, the drift-speed percentage can be expressed as:
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The drift-speed percentage, with throw, can actually be negative, implying that the cue ball actually
drift in the same direction as the shot (to the left).  From the bracketed term in the numerator, this
occurs when  is less than the negative of the shot angle shot (see more below).

Here is the MathCAD implementation of Equations 17, 19, and 20:
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A typical value for the maximum amount of throw possible, with a slow-speed stun-shot with the
optimal amount of English, is about 6 degrees.  Using this, we can see how the drift-speed
percentages vary with the shot angle.  For this example, we will use a shot distance of 3 ball
diameters.
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Regardless of the shot angle, the cue ball drift will be less if throw is used, as compared to not
using throw (see the two curves above).  For small shot angles, if the throw angle is large enough,
the cue ball can be stopped completely and even be made to drift in the same direction as the
shot (i.e., the drift is negative).  For the example above, the maximum shot angle possible is:
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From Equation 11, the limit where negative cue ball drift is possible is always where the cut
angle  is the negative of the throw angle throw, or from Equation 18, where  is the negative of

the shot angle shot:
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We can also look at how the drift speed percentages vary with distance between the cue ball and
object ball, for a given shot angle and throw amount:
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So when the cue ball is closer to the object ball, it is much easier to use throw to reduce (and
even reverse) the cue ball drift.  However, even for the small shot angle (1 deg) and large throw
angle (6 deg) above, it is impossible to reverse or prevent cue ball drift once the balls are past a
certain distance apart.  For the example above, the distance is about 6 ball diameters (see the
graph above or the calculation below).
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An interesting challenge shot is to try to create an OB shot angle (θshot>0) while stopping the

CB in place (CBDWT=0).  Below is a plot of the maximum shot angle possible for different
distances (d) between the CB and OB, assuming a typical maximum throw value of 6 degrees.
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The maximum shot angle possible approaches the maximum amount of throw possible as
the CB gets closer to the OB (d = D).  As the distance (d) between the CB and OB
increases, the maximum shot angle possible becomes less.

Theoretically (neglecting swerve), per the plot above, it is possible to hold the CB and
create an OB angle at any CB-OB distance. However, at the table, there is a practical limit
to the CB-OB distance over which this can be done.  The analysis above has ignored the
effects of swerve.  Swerve changes the effective cut angle of the shot, making it more
difficult to hold the CB.  And at larger distances, shot swerve becomes more of a factor.
Also, stun (for maximum throw) is more difficult to control at larger distances.  Also, it is
much more difficult to judge squirt and swerve and be accurate with the hit at larger
distances.

Please refer to the "throw-CB hold" resource page in the FAQ section at
billiards.colostate.edu for illustrations, examples, and video demonstrations.


