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Robotic Billiards: Understanding Humans
in Order to Counter Them

Thomas Nierhoff, Konrad Leibrandt, Tamara Lorenz, and Sandra Hirche

Abstract—Ongoing technological advances in the areas of com-
putation, sensing, and mechatronics enable robotic-based systems
to interact with humans in the real world. To succeed against
a human in a competitive scenario, a robot must anticipate the
human behavior and include it in its own planning framework.
Then it can predict the next human move and counter it accord-
ingly, thus not only achieving overall better performance but
also systematically exploiting the opponent’s weak spots. Pool is
used as a representative scenario to derive a model-based plan-
ning and control framework where not only the physics of the
environment but also a model of the opponent is considered. By
representing the game of pool as a Markov decision process and
incorporating a model of the human decision-making based on
studies, an optimized policy is derived. This enables the robot to
include the opponent’s typical game style into its tactical con-
siderations when planning a stroke. The results are validated in
simulations and real-life experiments with an anthropomorphic
robot playing pool against a human.

Index Terms—Cognitive robotics, decision making, dynamic
programming, human-robot interaction, intelligent robots, max-
imum likelihood estimation.

I. INTRODUCTION

S ROBOTIC technologies advance, robots are no longer

only suitable for automated processes with predefined
motion sequences but may accomplish tasks in dynami-
cally changing environments and even in the interaction with
humans. Seamless human—robot interaction is one of the most
challenging topics in current robotic research with a tremen-
dous application potential ranging from manufacturing via
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care to training/education. Interaction between humans and
robots can be of different type, for example on a physical
basis [1]-[3], using gestures, or social interaction [4]-[6].
The same accounts for the level of interaction [7], rang-
ing from reactive control strategies [8], [9] to learning-based
agents [10], enabling them to predict future actions of the
interaction partner and to act accordingly. On an even higher
level one is interested in the intention of a participating sub-
ject, going beyond the set of observable action toward figuring
out the underlying action goals [11], either in collaborative
scenarios [12]-[14] or in competitive scenarios [15], [16].

Competitive games are an appealing test scenario for
human-robot interaction for various reasons. On the one hand,
most people encounter them on a daily basis whenever doing
some kind of competitive sports. On the other hand, they pro-
vide an ideal test bed [17]-[20] as game rules are well defined
and evaluation is easy—if you win, you are better than your
opponent. Due to its multifaceted aspects combining motor
performance and planning capabilities, billiards (pool) is used
as a representative scenario in this paper.

For mastering a competitive game its entity, different fac-
tors must be taken into account to master a competitive
game. When facing a human opponent, being aware of his
individual preferences and limitations can help to improve
oneself’s game play. Once the weak spots of an opponent are
known, they can be countered to gain a tactical advantage.
At the same time, a player must be aware of his own flaws
to consider them properly when planning ahead. All exist-
ing pool planners, e.g., PoolFiz [21], rely on a model-based
approach and use a pool simulator based on the underlying
pool physics [22]-[25]. To evaluate their performance in a
competitive setup, the international computer games associ-
ation computational pool tournament was hold three times so
far in 2005, 2006, and 2008. Most of the participating plan-
ners densely sample the most likely strokes, thus creating a
search tree with a large branching factor in order to predict
the outcome of every stroke [26], [27]. A different method is
presented in [28] and [29] where a gradient-based optimiza-
tion is used to pocket balls and to take position play into
account. Besides, there exist various planners based on fuzzy
logic [30], [31] and deeper theoretical considerations about
the existence of Nash equilibria at pool [32]. Yet all those
planners assume that both players act according to the same
underlying optimality principles and do not account for indi-
vidual preferences which can occur when facing a human with
a pool robot [33]-[36]. In combination with the specific hard-
ware limitations of robotic systems, the question thus becomes
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whether a robot is capable of overcoming its physical draw-
backs through extensive planning and proper incorporation of
the opponents preferences.

The contribution of this paper is the consideration of the
human decision model to improve the success rate of a robotic
system at a competitive game. The presented approach based
on a Markov decision process (MDP) is able to take both
hardware limitations and a detailed model of the human
decision-making process into account. Thus the robot can pre-
dict the human’s actions and adapt to them by deriving an
optimized policy. Due to the competitive nature of the game,
the approach resembles a expectiminimax tree. Experiments
are both simulation-based with thousands of games evaluated
and hardware-based using a real-anthropomorphic robot play-
ing pool against a human. They show how the robot is able to
improve its success rate significantly by planning ahead while
incorporating the human model. To the best of our knowledge,
this is the first paper explicitly improving the robot’s game
play at pool by considering a human-specific decision-making
model.

The remainder of this paper is organized as follows.
Section II presents both a detailed problem description and
the general planning framework. In Sections III and IV, it is
described how hardware limitations and the human model are
included in the planner. Experimental results are presented in
Section VI. Finally, Section VII concludes with a summary
and possible expansions for the future.

II. PROBLEM STATEMENT AND CONCEPTUAL APPROACH
A. Problem Statement

Following the definition in [37], “eight-ball” billiards (from
now on called “pool”) can be seen as an competitive inter-
action scenario where a robot faces a human in a turn-based
manner. In order to win the game, every player has to pocket
all balls of his own color and finally the black ball before the
other player. At each turn, the player in charge can pocket balls
by executing a stroke with the cue. A model-based approach
is pursued in this paper to select an optimal stroke by pre-
dicting the outcome of the next few turns. If it is the robot’s
turn, the challenge is to find an optimized stroke (action) A,
from the action set A, also incorporating the pool state S € S
and possible actions A € Aj, of the human. Using the depth
variable ¢ accounting for the number of actions to plan ahead,
the problem is reformulated as follows:

Ay, , = argmax Q(S,,At,{r,h}), t=0,1,....n (1)

tr

with the yet unknown cost function Q encoding the quality of
the next n actions. Through proper choice of Q, maximizing
the term in (1) results in an optimal tactic to win the game.
Note that we only optimize over A, ,, i.e., the actual and future
action of the robot, because the strokes A;; of the human
cannot be directly influenced.

Differing from simulations, the robot must consider three
important aspects in real life. The first aspect, an unknown
human decision-making, makes it difficult to predict the exe-
cuted human stroke A;j; for a given situation S;. Yet this
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knowledge is necessary as the optimal stroke of the robot Ag ,
also depends on the strokes of the human according to (1).
Hence, studies must be conducted to derive an approximate
model of the human decision-making to evaluate (1) precisely.
The second aspect, a limited motor skill of robot and human,
refers to the deviation between the planned stroke A?‘r) n and
the executed stroke Ay, . Caused by limits in perception,
uncertainties in motor control, and imperfect internal models
of both players, the executed stroke is in general not similar
to the planned stroke. This turns the deterministic game in
simulation into a probabilistic game in real-world situations.
When representing both factors well enough with a probability
distribution f;,, it is modeled as follows:

Agrhy =fn(A?r,h})- 2)

The last aspect, robot kinematic constraints, limits the space
of actions A, of the robot as follows:

A, C A 3)

As the human kinematic constraints are negligible, it is
assumed that Ay = A.

All three aspects must be quantified and represented by pre-
cise models for incorporating them in (1). Focusing in this
paper on the human behavior, it is investigated how well the
human decision-making can be modeled and to what extent a
good model improves the win rate of the robot.

B. General Framework

This section develops a mathematical framework using an
MDP to model the game of pool in its entity and consider all
aspects listed in Section II-A. Pool can be represented as a
sequential stochastic game with a continuous action space and
a continuous state space. It is sequential due to the turn-based
stroke execution switching between both players and stochas-
tic due to the nondeterministic outcome of every stroke caused
by the limited skill of each player. Differing from games with
a finite set of states such as chess or backgammon, there
is an infinite number of possible combinations for the balls
to be placed on the table. The same holds for the actions.
When discretizing the state and action space, the game of
pool is modeled as a MAXPROB MDP (MAXPROB MDP)
(see [38]). It is based upon a standard MDP defined by tuples
of the form (S, A, 7, R, G, so) where S € S is the set of states
(position of all balls on the table plus current game situation
determined by the rules), A € A is the set of actions (strokes),
T € 7 is a transition function § x A x § — [0; 1] denoting
the probability of moving from state §; to S; by executing the
action A, R € R is a mapping S x A —R specifying action
rewards, and Sy is the start state.

For an MDP, the general goal is to find an optimal policy
7* maximizing the expected reward when traversing the states
of the MDP. By introducing the discount factor y € [0; 1]
and the value function V : & — R, the value function V7™ (s)
denoting the expected reward for the policy 7 starting in state
S is defined as follows:

VT (S) =" [Z y’R(St,A»}

t=0

“4)

So=S
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In addition, the action-value function Q : S x A — R in (1)
is formalized as follows:

Q7 (S, A) = E7 [Z yfR(Sf,A,)}

=0

)

So=S,Ap=A
The optimal policy 7* is the policy that maximizes the value
function V7 for all possible policies 7 as follows:

7 = argmax V7" (6)

b

resulting in the optimal value function V*(S) and action-value
function Q*(S, A). Both value function and action-value func-
tion are closely related, as such the optimal value function
V*(S) is obtained by finding the action A that maximizes the
optimal action-value function Q*(S, A) as follows:

V*(S) = max 0*(S, A). @)

Note that the used formulation is consistent with the existing
literature on the topic (see [39]).

MAXPROB MDPs are a special class of MDPs with the
goal of maximizing the probability of reaching a goal state;
that is the probability of winning a game. They are based upon
stochastic shortest path MDP (SSP MDP) introducing a set
of absorbing goal states G € G. Such a goal state is defined
by 7(G,A,G)=1,VAe A and R(G,A) =0,VA € A,
allowing only self-transitions in G and accumulating no
reward. The only two conditions for SSP MDPs are that for
every state S at least one proper policy exists that reaches
a goal state with probability P = 1. Additionally, every
improper policy has a reward of —oo. For pool, SSP MDPs
are still not applicable as they only feature goal states (robot
wins) but no dead end states (human wins). In case of dead
end states, it is not guaranteed anymore that a goal state
can be reached from any other state with probability P = 1.
MAXPROB MDPs on the other hand have a similar structure
as SSP MDPs but explicitly account for dead ends by judging
the quality of every policy not based on the expected reward
but based on the probability of eventually reaching a goal
state. By assigning a reward R = 1 to every action that reaches
a goal state and R = 0 to all other actions, the resulting opti-
mal value function V*(S) reflects the probability of reaching
a goal state (e.g., winning the game) when starting in state S.

In theory, an optimal policy can be obtained then for an arbi-
trary start state So using heuristic search algorithms [40], [41].
Unfortunately, due to the large state space, those algorithms
cannot be used for pool. Instead one has to use approxi-
mation algorithms resulting in a near-optimal value function
Vo< v by evaluating only the most promising subset of
state-action pairs. In general, those algorithms turn the prob-
abilistic MDP into a deterministic planning problem resulting
in a search tree with Sp being the root and solve it using a
deterministic planner [42].

Having obtained a policy, an individual action-value func-
tion can be assigned to each stroke specifying the expected
reward. Then a player simply has to execute the stroke with
the highest expected reward. A method to find an action-
value function that also considers the human motor skill and
decision-making is developed in the following sections.

(b)

Fig. 1.  Stroke parameter overview. (a) All possible stroke parameters.
(b) Considered stroke parameters in this paper.

III. MODELING HUMAN/ROBOT MOTOR SKILL AND
ROBOT KINEMATIC CONSTRAINTS

As explained in Section II-A, the limited motor skills of
both players let the executed stroke differ from the desired
or planned stroke, thus requiring a measure to describe the
percentage of success of a desired stroke. This is described by
the pocket probability which incorporates the limited motor
skill in the presented planning framework. As it is based upon
the stroke difficulty measure, the latter is introduced first.

A. Measure of Stroke Difficulty

The expected reward in (4) is closely related to the stroke
difficulty. When playing pool, the expected reward depends on
the number of pocketed balls. Intuitively the more difficult it
is to pocket a ball, the lower the reward is. When executing
a stroke, the player must not hit the ball he wants to pocket
(called “object ball”) directly. Instead, he has to hit the white
ball (called “cue ball”) with the cue. From a mathematical
perspective, a stroke can be described by five parameters o,
B, v, 0, and p [43] for a given 2-D cue ball position on a flat
table Fig. 1. Stroke intensity p and stroke angle 6 have to be
considered even by novice players in order to pocket balls. On
the other hand, the angles «, 8, and o are mainly varied by
advanced players to induce spin on the cue ball for a better
position play. A central assumption for the remainder of this
paper is a well defined spin during the stroke. As such the
cue ball is supposed to be hit centrally and with no side spin
(e.g.,a=0,8=0, and 0 = 7/2). As a result, the parameter
space can be reduced from 5-D to 2-D (6 and p).

Different measures are used in this paper to define the
stroke difficulty. For direct shots where the cue ball hits the
object ball without any other ball-ball or ball-cushion col-
lisions, the stroke difficulty can be calculated using basic
geometry. Assuming a negligible spin transfer during ball-
ball collisions, the stroke intensity p and stroke angle 6 being
independent of each other, and the stroke intensity p being
large enough to pocket a ball, the difficulty of a direct shot
is solely specified by the range of values [0;; 6,] (see [44]).
The value 6, = 0.5(6; + 6,) denotes the mean angle for
which the object ball is pocketed in the middle of the pocket.
Intuitively, the smaller the interval [6;; 6,] or allowed angular
deviation (AAD) becomes the more difficult the stroke will
be [see Fig. 2(a)]. The same technique can also be used for
combination shots including more than one object ball.
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(b)

Fig. 2. Visualization of two methods to determine the difficulty of a stroke.
(a) AAD stroke difficulty based upon the maximal angular deviation for which
the object ball is just pocketed. (b) Expert stroke difficulty based upon the
distance d; between cue and object balls, the distance dp between object ball
and hole and cutting angle 6.

Another method to determine the stroke difficulty is based
upon expert knowledge [45], [46]. It reveals that the human
perception of stroke difficulty depends only on a few param-
eters: the distance d; between cue ball and object ball, the
distance dp between object ball and pocket, and the cutting
angle 0. [see Fig. 2(b)]. Various approaches in this paper try
to determine an expression for the difficulty of a stroke based
on this knowledge [26], [30], one of the most prominent ones
is [28]

. cos(6,)
K = didy (8)

Analogously to the AAD stroke difficulty, a small value corre-
sponds to a tricky stroke and a large value represents an easy
one. The AAD stroke difficulty can be linked in a straightfor-
ward fashion to the pocket probability, implicitly considering
the parameters 6., di, d», and partially blocked paths due to
other balls on the table. The expert stroke difficulty on the
other hand suggests that the human perception of difficulty
deviates from the AAD stroke difficulty due to a different
perspective, thus requiring a new difficulty measure when
modeling the human decision-making.

Robot kinematic constraints can be incorporated using the
AAD stroke difficulty. It is assumed that robot kinematic con-
straints limit the range of admissible 6-values to the interval
[le, Gf] Then the resulting interval of stroke angles that are
both executable by the robot and pocket a ball is given by
the intersection [6;; 6,] N [0{‘, 95] Fig. 3 illustrates the influ-
ence of the robot kinematic constraints. Shown is a simplified,
yet true-to-scale collision model of the used pool robot and
the pool table, approximated by bounding boxes. The robot
is limited by two constraints. First, it has a stiff body (dark
gray rectangle in Fig. 3) which collides with the table if the
white ball is placed too far away from any cushion. Second, its
right endeffector does not lie on the table but on the cushion,
which causes problems if the white ball is placed too close to
the cushion. The angle 6, specifies the range of possible stroke
angles for a given position of the white ball on the table. An
angle 6, = 2w means the white ball can be shot in any direc-
tion whereas an angle 6, = 0 stands for an unreachable white
ball. Moreover, do gray circles mark the intervals [91" ; 95] of
stroke angles for specific positions of the white ball.

IEEE TRANSACTIONS ON CYBERNETICS

205 deg = 6r

0deg

Fig. 3. Kinematic constraints of the robotic system. Due to collisions with
the pool table, the robot cannot execute a stroke in an arbitrary direction for
a given ball position. The brighter the area is, the larger the range of possible
stroke directions is. Gray-circled segments mark the possible stroke direction
for certain positions of the white ball.

B. Measure of Pocket Probability

This section derives the pocket probability Py € [0; 1]. It
links the stroke difficulty presented in Section III-A to the indi-
vidual motor skill of each player as described mathematically
in (2).

It is assumed that the stroke precision of robot and
human is represented by normal distributions for the stroke
intensity p and stroke angle 6 as NP’{f’h}(“P’sz,{r,h}) and
N, rh}(/,LQ,O’(_)Z{r h}) Here, 1, and ug encode the desired
(planned) stroke A*. The variances apz{r h) and 0'9 (r.ny Yep-
resent the individual skill level of robot and human. Novice
players are characterized by large variances whereas for pro-
fessionals the variance is close to zero. Equation (2) is thus
reformulated using the 2-D normal distribution N, p) as
follows:

A = fu(A*) = Ny (e, 2) ©)
with = [1p, el T = diag(oﬁ{nh}, ag’{r,h}).

The limited motor skill of human and robot is encoded
by the variances apz’ {r,h}’092,{r,h} (see [44]). When defining
the stroke difficulty using the AAD method, the stroke dif-
ficulty can be converted for every stroke into a pocket
probability P € [0; 1]. Similar to the stroke angle, we assume
that a ball will be pocketed for stroke intensities within the
interval [p;; p,]. For stroke intensities p < p;, the ball is not
fast enough to be pocketed and values p > p, cannot be
achieved due to a limited player strength. With fi, 53 as the
probability density function of N, zy, the pocket probability
can be described by

pll eLl
Py = ffﬁr,lz}dedp-
VZE]

(10)

We further assume that o, < py, —pi, p1 < pp <K pu, i€,
the pocket probability is mostly unaffected by the choice of
wp and depends primarily on the stroke angle 6. Then (10) is
approximated with fp (5 as the probability density function
of Np,ir.ny by

O

Py~ /fe,{r,h}dé’.

0

(11)
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The formulas also hold for combination shots but must be
extended if two or more object balls shall be pocketed with a
single stroke.

IV. MODELING HUMAN DECISION-MAKING

This section focuses on the human decision-making to
include it in the general planning framework. Differing from
a robot for which the assumptions in Section III hold and
where the pocket probability can be calculated based upon
the AAD stroke difficulty, the expert stroke difficulty indi-
cates that humans select their stroke based on different criteria.
When modeling human decision-making, three subproblems
are identified.

1) Compute the Human Stroke Difficulty k,: How difficult

a human thinks it is to pocket a ball.

2) Compute the Human Pocket Probability Pj: How diffi-

cult it is for a human to pocket a ball.

3) Compute the Human Discount Factor y,: How far a

human is planning ahead.

Differing from a rationally acting robot who will pocket the
ball with the highest action-value function, unknown human
likings or limitations may favor a different stroke. As it is also
unknown how these preferences affect the pocket probability,
one has to specify not only the human stroke difficulty «j but
also the human pocket probability Pj(kj) as a function of the
human stroke difficulty (see [47]).

1) Human Stroke Difficulty: In this section, an algebraic
expression of the human stroke difficulty «; based on two
psychological experiments is derived. Similar to the stroke
difficulty in Section III-A, it measures the perceived human
difficulty of each stroke and allows to rank them accord-
ingly. In the first experiment, the most influential factors on
the human stroke difficulty are figured out. The result is then
used in combination with the second experiment to determine
a precise model of the human stroke difficulty.

For the first experiment, 25 participants (15 males,
21-31 years, @25 years) are shown 24 pool scenarios on a
real-pool table representing a wide variety of possible strokes
and AAD values. In every scenario, two playable object balls
are placed on the table. For 18 scenarios, the AAD stroke dif-
ficulty is similar for the two object balls whereas the three
parameters di, da, and 6, are varied. For the other six scenar-
ios, one of the two object balls is easier to pocket according
to the AAD stroke difficulty, but either more difficult to reach
(the player has to lean more over the pool table) or partially
blocked by a third ball, reducing the interval of admissible
stroke angles [0; 6,]. Each participant has to judge which ball
seems easier to pocket and is asked to specify freely one or
more reasons for this decision which are categorized after-
wards. The most frequently stated reasons with their number
of occurrence for the first 18 scenarios are shown in Table I.
The answers show that the variables di, d», and 6. are the
most influential factors. The effect of a cushion close to cue
ball or object ball is indefinite as it helps some players at
aiming whereas others feel disturbed. For the six remaining
scenarios, in 70% the easier stroke according to the AAD
stroke difficulty is selected even if it is more tricky to reach.

TABLE I
INFLUENCE OF DIFFERENT FACTORS ON
THE HUMAN STROKE DIFFICULTY

occurrence reason
264 x A smaller cutting angle 6.
75% A smaller distance ds
31x A smaller distance d;
29x The cushion nearby helps at aiming
24 % The cushion nearby disturbs at aiming
12x Intuition
9x Anatomic reason
8% A smaller distance d; + d2
17x Very specific reason
> 469 %

In 60%, the easier stroke is selected even if it is partially
blocked by another ball. Similar to the answers regarding the
advantage of a cushion nearby, some people state that the ball
helps at aiming; however, other people feel distracted by it.

For the second experiment, 12 images are created show-
ing pool scenarios of different AAD stroke difficulty with
one cue ball and one object ball. To compare every possi-
ble pair of images, six sets of six images were shown to
23 participants (13 males, 18-51 years, @25 years). The partic-
ipants had to arrange every individual set of images according
to their perceived difficulty. Using these sequences, both a rel-
ative ranking o, o, k € {1, 2, ..., 12} and an absolute ranking
Bk, ke 1,2,...,12, 8 € [1,12] based on the mean ranking
are obtained for every single scenario.

In order to map the result of both experiments to a human
stroke difficulty, five representative measures describing the
human stroke difficulty «;, are considered. The first two mea-
sures are based upon additive linear models to account for the
increasing stroke complexity for high values of di, d5, and 6,.
The next two models include the term cos(6.) to account for
the increasing difficulty at high cutting angles. The last term
is an extension of the existing measure (8). They are

K| = aldi‘l(dl) +a2d§2(d2) +a39§3(9")

Ky = ald?(d‘) + a2d§2(d2) + a30530%) 4 Kp

k3 = aldfl(d‘) + a2d§2(d2) + a3 cos(6,) <30

K4 = ayd)' @ 4 azd?((b) + a3 cos(0.)3 %) + Kp

cos(6,)3)

{1 2@ (12)

K5 =

with a = [aj,a2,a3] as constant coefficients and
¢ =|[cy, cp, c3] with ¢; and ¢ as constant coefficients and
c3 as polynomial of degree one. A two-staged optimization is
used to find optimized values for a and c¢. The cost function
I'1 of the first stage consists of two terms related to the first
and second psychological experiments. Minimizing the first
term corresponds to matching the predicted decision Aj(a, c)
to the dominant decision A; of participants in the first exper-
iments. The factor §; acts as a penalty term if the predicted
decision does not match the decision from the first experiment.
By minimizing the second term, one matches the predicted rel-
ative ranking a(a, ¢) to the relative rank oy of each scenario
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TABLE 1T
OPTIMIZED PARAMETERS WHEN APPROXIMATING
THE HUMAN STROKE DIFFICULTY

measure ai az as C1 Cc2 C3 FQ
K1 46 7.1 12 0.10 010 4.5-—4.70. 0.02
K2 1.3 65 20 1.0 021 3.8-—4.96. 0.008
K3 -0.53 1.3 -48 -1.1 4.6 0.24+2.20. 0.06
K4 0.81 -14 -48 19 -0.75 2.8+1.96. 0.08
K5 - - - 033 038 4.1—-2.76. 0.002

in the second experiment

18 12
r = Zsj(a, o)’ + Z[&k(a, c) — Olk]2

j=1 k=1

2 if Aj(a,e) # A,

13
0 else. (13)

where §; = {
The cost function I'; of the second stage is a measure how
much the predicted absolute ranking xy(a, ¢) of each scenario
in the second experiment differs from the absolute ranking Sj.
To suppress outliers, the 25% trimmed mean P25 is used

instead of S;. By minimizing the function I';, a measure of
the resulting stroke difficulty is obtained
12
= Z[I?k(a, c) — ﬁk,25]2~ (14)
k=1

Final results are displayed in Table II. Because the function
ks has the lowest cost I'p, it is the best approximation to the
real-human stroke difficulty. Thus the human stroke difficulty
ky, is determined as follows:

cos 964.172.70C

Kp = 15)

d(l).33 d(2).38

2) Human Pocket Probability: This section develops a
model of the human pocket probability P, € [0; 1] to mea-
sure the pocket probability of the human player depending on
the human stroke difficulty as follows:

Pp = fp(kn)

thus linking the two measures in a similar way to the
AAD stroke difficulty and the pocket probability. To model
Pj, precisely over a wide variety of (0., d;, dy)-triplets,
a Monte Carlo approach is used that evaluates random strokes
occurring during a series of conducted pool games.

In total, four participants (3 males, 24-36 years, @29 years)
took part in the third experiment. Two players are intermediate
amateurs who frequently play a few pool games per week, and
two are novice players with hardly any experience. Participants
were grouped into dyads of equal playing skill. Their task was
to play multiple games while sticking to direct strokes and
hitting the cue ball centrally. The stroke results are split into
11 intervals depending on their stroke difficulty. For comparing
the influence of AAD stroke difficulty, expert stroke difficulty,
and human stroke difficulty on the human pocket probability,
all measures are normalized to the [0; 1] interval. For every
interval, the mean pocket probability and mean stroke diffi-
culty are calculated. Pearson’s correlation coefficient between

(16)

IEEE TRANSACTIONS ON CYBERNETICS

TABLE IIT
CORRELATION COEFFICIENT BETWEEN STROKE
DIFFICULTY AND POCKET PROBABILITY
WHEN CONSIDERING ALL STROKES

laver evaluated correlation coefficient
play strokes K AAD Kh
one 216 046 0.61 0.89
two 182 0.65 0.72 0.86
three 164 0.54 0.58 0.88
four 152 0.76  0.68 0.92
TABLE 1V

CORRELATION COEFFICIENTS BETWEEN STROKE
DIFFICULTY AND POCKET PROBABILITY WHEN
NEGLECTING VERY EASY STROKES

player evaluated correlation coefficient
strokes K AAD Kh
one 169 0.79 0.85 0.94
two 152 087 0.77 0.91
three 134 0.64 0.52 0.88
four 121 0.89 0.82 0.91
1
% 0.9 g?
3 0 :
8 o7 %
g 06
g 05 g
£ os £
2 s 2
0 02 04 06 08 1 0 02 04 06 08
human stroke difficulty human stroke difficulty
(@) (b)

Fig. 4. Plotted results of the normalized stroke difficulty versus pocket
probability for player one with corresponding regression lines. (a) All strokes
considered. (b) Without easy strokes.

stroke difficulty and pocket probability for the three stroke
difficulty measures is shown in Table III. For small values of
dy and d», both human stroke difficulty and expert stroke dif-
ficulty become very large and cannot be represented properly
by a linear model. Thus the correlation coefficient has been
recalculated as shown in Table IV, neglecting the interval with
the highest stroke difficulty values. The linear relation when
neglecting very easy strokes shows that humans act indeed
rationally when selecting the stroke with the lowest human
stroke difficulty as it is the one with the highest chance to
pocket a ball.

Fig. 4 displays the obtained results for player one, showing
the intervals and the computed linear regression function for
the mapping from human stroke difficulty to human pocket
probability. The three different relations correspond to the
expert stroke difficulty, the AAD stroke difficulty, and the
human model developed in this section. When using the expert
stroke difficulty or AAD stroke difficulty, a nonlinear relation
between pocket probability and stroke difficulty is observable
for small stroke difficulty values. This results in lower corre-
lation coefficients for x, AAD compared to «j, as calculated in
Tables III and IV. Based on the results, the relation between
Py, and «j, can be determined individually for each player.
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0.76 ffeene. i?]?;irfnee‘élgfpmyer to simulate only the next n actions, resulting in an approximate
value function V" as follows:

0.74 | EEEREREREERELE

likelihood
o
~
N

0.70 J_,.l'“

0.68

0 0.2 0.4 0.6 0.8 1.0
discount factor y,

Fig. 5. MLE of the human discount factor y;, for a novice player and an
intermediate player. Only the maximum of each plot is of interest. A discount
factor y;, = 0 stands for a player not planning at all whereas a discount factor
yp = 1 accounts for good planning capabilities.

For player one, it becomes

0.36k, +0.27 Vi € [0; 2.02]

P, = Kp) =
n = fp(kn) | Vi, € [2.02; o0].

A7)

3) Human Discount Factor: So far only the humans’ skill is
discussed, specifying how well they can pocket balls. Another
aspect are planning capabilities, defining how much they think
about future states when planning their next stroke. Similar
to (4), it is modeled by a discounted reward factor y;,. Whereas
a small y;, value implies that the player focuses more on the
current situation, a large discount factor yj, indicates that he
also takes future table states into account. The data from the
third experiment can be used to compute an individual dis-
count factor yj, for every participant by a maximum likelihood
estimation (MLE) maximizing the percentage of correctly pre-
dicted stroke decisions W for every player over the parameter
yp, as follows:

Vi = argmax L(yp|V). (18)
Yh

Results of the MLE for two dyads for a planning depth of 1
are displayed in Fig. 5 and [47]. While the intermediate player
attested to think about the outcome of a stroke (y; > 0), the
novice player confirmed that he solely focuses on the easiest
stroke (y, = 0). This corresponds to the displayed results,

with P, ~ 0.55 for the intermediate player and y, ~ 0 for the
novice player.

V. POOL-SPECIFIC ADAPTION

This section describes how the general framework presented
in Section II-B is modified and combined with the stroke dif-
ficulty and pocket probability measures in Sections IV and IV
to fit pool-specific needs. The two main challenges that must
be overcome are a high computational complexity when solv-
ing the MAXPROB MDP and the derivation of an optimized
policy.

Solving the MAXPROB MDP involves the creation of a
search tree. Expanding the search tree means to run a pool
simulation that predicts the outcome of a stroke for a given
state on the table. Yet running a pool simulation is a time-
costly operation and as such an approximate scheme must be
used that limits the number of pool simulations. A first step is

19)

V(S =E [Z Y'R(S:, A,,{r,h})]

=0

So=S

and approximate action-value function

n
@@mzw{ZWM&mw@ L)
So=S,Ap=A

t=0

Yet this causes other problems as for the MAXPROB MDPs,
a reward R # 0 is only assigned whenever a goal state is
reached, i.e., a game is won. Thus in theory every branch
of the tree must be expanded until reaching a goal state or a
known dead end to evaluate its outcome, which, however, may
take more than n actions. This is overcome by introducing an
reward R, as follows:

+1
-

which helps to estimate the outcome of an action whenever
the first ball gets pocketed. This serves as a bias of the planner
toward strokes for which most balls of the own color and least
balls of the opponent’s color are pocketed. In addition, the
original condition of a reward R = 1 when winning a game is
relaxed to

for every pocketed ball of the robot 21

for every pocketed ball of the human

if robot wins

RU={+W (22)

—w if human wins

with constant w. The combined reward R is defined as follows:

R=R,+R,. (23)
The constant w weights the importance of pocketing a ball
with respect to a win/loss of the game. A high w-value results
in an aggressive game style if the planner sees a chance to win
the game and a defensive game style if there is a chance for
the opponent to win the game. The chosen reward R does have
a physical meaning as for w = 0 and y = 1 the value func-
tion V7 (S) represents the expected number of balls that the
robot will pocket more than the human over the next n strokes
following the policy . Similarly, the action-value function
Q” (S, A) denotes the difference of pocketed balls for a given
policy when executing the stroke A. During tree creation, prun-
ing is used to reduce computational complexity further: only
the most promising strokes are simulated, i.e., the ones that
aim at pocketing a ball of the own color with a direct shot. The
combination of all three methods leads to a considerable reduc-
tion of computational complexity as it is sufficient to simulate
only a subset of all possible strokes over the next n turns.
Once a search tree is created, an optimized policy must
be derived for computing the next stroke. Backward induc-
tion is used to iteratively evaluate the value function y Sy
backwards in time to find V7 (S¢—1) and the optimized stroke
parameters for each stroke. It is started by calculating the
action-value function for every leaf node of the search tree
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of depth n. This is the reward R weighted with its pocket
probability as follows:

P iR, if robot’s turn

07 (S, Ay) =
0" (Sn, Ap) PiiRy

. 24
if human’s turn.

In (24), the variable P, ; stands for the pocket probability of
the ith ball-pocket combination according to (11) using the
AAD stroke difficulty and Pj, ; for the human pocket probabil-
ity according to (16). Based on Q” (S,, A,), the value function
y (Sy) is calculated as follows:

max P ;R, if r’s turn

VTS =1 !

' (25)
min Py, R,
1

if A’s turn.

The value function is split up into two cases, accounting for
the competitive nature of the game. As such the robot tries to
maximize the value function, whereas the human tires to min-
imize it. During backward induction, the action-value function
Q” (S¢—1,A;—1) is calculated in an intermediate step to derive
1% (S;—1). Because the outcome of each stroke is nondetermin-
istic due to the limited motor skill of each player, it has to be
weighted with the probability density function f{, ») [see (10)].
This results in

O™ (Si—1, A1)

= B[Rt + V7 (S))]
S S (Rt + 7, V7 (S0 ) frdp s if r°s wen
/ /(RH IR v (S,)) fudpdd if s turn

with y,- as the discount factor of the robot and y;, as the human
discount factor according to (18). Note that the integrals in (26)
can only be approximated due to a discrete search tree. The
value function V7 (S,_1) is then calculated as follows:

(26)

V™ (S;—1) = optimize O™ (Sy—1, Ar—1)

Ay

max Q” (S, Ay if r’s turn
=" . 27)

min Q" (S;, A;) if ’s turn.

Hp 1o

Having obtained V7 (So), the optimized stroke parameters
Wp, o for the actual stroke can be directly derived as they
are the ones optimizing V7 (o). The framework can be seen
as an expectiminimax tree [48] with an additional optimization
step for each node to calculate the optimal reward.

VI. EVALUATION

The evaluation of the planning algorithm is both based upon
simulations and by using an anthropomorphic robot facing
a human opponent on a real-pool table. Simulations allow
for a fast evaluation of a large number of strokes to mea-
sure the individual influence of various aspects. In contrast,
the real-world scenario demonstrates the validity of the entire
framework. For both experiments, the pool simulator described
in [44] is used.

The individual parameters of robot and human in Table V
are determined through hundreds of analyzed strokes recorded
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TABLE V
PARAMETERS FOR THE EXPERIMENTAL
EVALUATION
value human robot
op [Ns] 0.01 0.03
og[rad]  0.007 0.012
~[-] 0.5 1

with
constraints /
human model

without
constraints /
human model

(@ (b)

Fig. 6. Effect of a varied planning depth based upon 200 randomly selected
table states using Venn diagrams. (a) Ignoring and (b) considering robot
kinematic constraints and the human model.

by a ceiling camera, indicating that the human opponent out-
performs the robot with respect to motor skill (smaller oy, 09)
but is inferior to the robot concerning planning capabilities
(smaller y).

A. Simulations

Simulations make it possible to estimate the individual
influence of a variety of factors without the need to per-
form time-consuming experiments. For all simulations, a pool
simulator programmed in C4++4\Qt is used [44], whereas the
planning framework according to Section V is implemented
in MATLAB R2013b.

A first simulation aims at displaying the influence of a
varied search depth n [see (24)]. As discussed in [27], the
effectiveness of a search depth of 2 is still an unsolved ques-
tion. Differing from deterministic board games such as chess
or backgammon where the search depth is among the most
influencing factors, the probabilistic nature of pool makes it
more difficult to answer the question. Archibald ef al. [27]
found out that both a search depth of 2 and a more densely
sampled action space of depth 1 have a similar influence on
the percentage to win. In our simulation, a total of 200 strokes
for random pool states is processed with a search depth
of 0-2. The first simulation scenario is similar to the experi-
ment in [27] as it neither includes robot kinematic constraints
nor the human model [we use (11) instead of (16) to model
the human decision process]. In contrast, both human model
and robot kinematic constraint are incorporated in the sec-
ond scenario. Simulation results are shown in Venn diagrams
in Fig. 6. As such for 17 strokes, the planning results for
a depth of 0 and 1 are similar. Compared to [27], most of
the strokes—105 for the first scenario and 77 for the second
scenario—are similar for different search depths and a var-
ied search depth influences the decision in just about 20% of
all cases. This indicates that a search depth of 2 has only a
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without 266 p=0.019
repositioning 319 :
with p =0.035

535
repositioning 597
720 - without human dec. proc. p=0.022
794 - with human dec. proc.

without
constraints

Fig. 7. Number of robot wins for different scenarios after 2400 games
played in simulation. Right side: significance level of every comparison using
a two-sample 7-test.

deceived 226 =024
repositioning 250 ’
without 272 - robot search depth = 0 p=0.039
repositioning | 319 - robot|search depth = 1

Fig. 8. Number of robot wins for different planning depths after 2400 games
played in simulation. Right side: significance level of every comparison using
a two-sample #-test.

minor influence on the decision process and can be probably
overcome by a more densely sampled action space of depth 1.

The next simulation illustrates the effect of incorporating
the human decision process in the planning framework. Three
different runs are performed, depending on the way the robot
kinematic constraints of Section III-A are treated. For the
“without repositioning” run, whenever the robot is unable to
reach a ball, it is considered as a foul. In the “with reposition-
ing” run, the white ball is slightly moved such that the robot
is able to execute a legal stroke whenever the robot is unable
to reach a ball. Finally, in the “without constraints” run, there
are no kinematic constraints, i.e., the robot is able to reach
any position on the table. Every run consists of two scenar-
ios evaluating the effect of the human decision process when
planning ahead. For every scenario, 1200 games are evaluated
twice, both with robot and human as starting player. When
considering the human decision process, it is modeled accord-
ing to Section IV. Otherwise, (11) is used instead of (16) to
model the human pocket probability. The number of robot wins
of every run is checked for significance using a two-sample
t-test. Results are shown in Fig. 7. It is visible that for all
runs the inclusion of the human decision process significantly
improves the win rate.

The last simulation displays the necessity to include a pre-
cise model of the robot’s kinematic constraints as shown
in Section IIl in the planner and the effect of a varied
search depth of the robot. Similar to the previous simulation,
1200 games are evaluated twice. Two different runs are con-
sidered. For both runs, it is considered as a foul whenever the
robot is unable to reach a ball during stroke execution. The
difference is that no kinematic constraints are considered when
planning ahead for the “deceived repositioning” run, whereas
kinematic constraints are considered when planning ahead for
the without repositioning run. On can see in Fig. § that a
search depth of 1 significantly improves the robot’s win rate.
Moreover, considering the robot’s kinematic constraints when
planning ahead increases the win rate by around 20%-25%.

7DoF arms

onboard
computers

gimbal-based
endeffectors

omnidirectional
platform

laser rangefinder

Fig. 9. Overview of the anthropomorphic robot.

B. Experimental Evaluation With Robotic Platform

The hardware setup for the experimental evaluation con-
sists of a robot with a pair of 7-DoF anthropomorphic arms
mounted on an omnidirectional platform (see Fig. 9). Special
gimbal-based end effectors are designed to hold the cue prop-
erly. A Basler acA1300-30gm ceiling-mounted camera with
a resolution of 1280 x 960 px and a frame rate of up to
40 Hz mounted approximately 2.50 m above the table pro-
vides information about the cue and ball positions, being able
to distinguish between white, black, striped, and solid balls.
In order to place the cue properly behind the cue ball, com-
bined data of the camera, the robot’s Sick S300 laser range
finders, arm pose data, and two JR3 end effector force/torque
sensors is used. The robot is able to move autonomously
around the table by detecting the legs of the pool table and
execute a stroke independently. Two onboard computers with
a 2.66 GHz Intel Pentium i7 920 CPU and 12 GB RAM
control both arms and the platform. The combination of a
proprietary real-time data base [49] for data exchange with a
real-time architecture [50] allows an update rate of 1000 Hz
while sufficing hard real-time constraints.

To create an search tree within reasonable time, pool simula-
tions are parallelized over 40 computers equipped with a AMD
Phenom II X6 1075T 3 GHz CPU and 8 GB RAM. Another
computer with similar specifications is used to compute an
optimal stroke as described in Section V based on the com-
puted search tree. During tree creation, a variable branching
factor in the range of 300 is used, resulting in a about 100 000
computed strokes for a search depth of 2. The planning capa-
bilities of the robot are evaluated by comparing two scenarios
with the same human opponent. In the first scenario, the search
depth 7 is set to O [see (19)]. The stroke intensity p has been
set to a constant value of 0.17 ns. In total, seven games have
been played, resulting in 89 strokes of the robot. In the second
scenario, the search depth #n is set to 2 while also considering
the human decision-making according to Section IV. Here six
games have been played, resulting in 67 strokes of the robot.
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10
depth =0 25
89 |
p =0.0037
depth =2 34 - successful strokes
67 - all strokes

Fig. 10. Number of successful strokes for different search depths using an
anthropomorphic robot. Right side: significance level of every comparison
using a two-sample 7-test.

There are not enough games played for any conclusion about
the statistical significance of the number of wins/losses. It is,
however, possible to draw conclusions by looking at the indi-
vidual strokes. A stroke is considered as “successful” if the
robot can pocket a ball and without committing a foul, thus
corresponding to the with repositioning run in Fig. 7. All other
strokes executed by the robot are considered to be “unsuccess-
ful.” Using this definition, the two results differ significantly
from each other (based on a two sample r-test) as only 25
out of the 89 strokes are successful for the first scenario
whereas 34 out of the 67 strokes are successful for the second
scenario Fig. 10.

C. Discussion

The performed experiments show that both excessive plan-
ning and learning a model of the opponent significantly
improve the outcome of a pool game. Still, there are some
more general aspects regarding the human model to be
discussed.

A quite unique problem at pool is the coupling between a
player’s skill in terms of success rate when pocketing a ball
and his planning capabilities. A chess player’s skill is pri-
marily determined by his planning capabilities whereas the
success of a golf player depends mainly on his skill when
doing a golf swing. Yet with the exception of novice pool
player, one cannot tell by just looking at the result of a game
whether a victory comes from superior skill or planning. The
used robotic platform during the experimental evaluation pos-
sesses superior planning capabilities but inferior motor skill
compared to the human opponent. Thus hardware improve-
ments resulting in lower standard deviations o, and oy are
expected to have a major impact on the outcome of a game.

Only strokes up to a search depth of 2 are simulated. Due
to imperfect calibration, the deviation between simulation and
experimental results increases as the search tree is extended
deeper. To account for this problem, one may introduce an
additional parameter which weights future strokes less. Still
this parameter is different from the discount factor yj, 5 that
accounts for the planning capabilities of human and robot.

VII. CONCLUSION

This paper deals with the question how a robot facing a
human in a competitive task can improve its performance
through extensive planning and precise representation of
the opponent’s behavior. This allows the robot to adapt to
human-specific decision-making and the opponent’s individual
motor skill while overcoming its own kinematic constraints.
Simulations show that including the human model in the
planning framework of the robot significantly improves the
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win ratio. Real-world experiments with an anthropomorphic
robotic platform prove that extensive planning significantly
helps for a better position play.

Future work will be focused on employing reinforcement
learning for better online adaption to the human model, result-
ing in a better overall performance against each individual
player.
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