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Abstract-A robotic system is presented wbicb automati- 
cally pots (i.e., sinks) pwl balls. A homography is estimated 
that relam the gantry robot coordinate frame to the over- 
head (global) camera coordinate frame. This homography 
is computed by lint calculating the mapping between the 
camera frame and a pmjeclion of the robot frame, and 
then solring the pool table plane equation in the robot 
frame. A measurement technique has been developed which 
is based upon a local camera attached to the mbot end- 
effector. This local camera allows the robot to be positioned 
accurately over circular targets placed on the table. The 
homography and table plane equation are lhen estimated 
by establishing correspondences between at lean 4 measured 
target positions in the global camera and robot frames. The 
resulting homograpby allows the gantry lo be positioned to 
within an average of 0.6 mm ofa global m e i s  frame p i t i a n  
over the extent of a full sized pool table The system has been 
used to pat a ball with 6790 accuracy over the extent of the 
table, aith a high repeatability. 

I .  INTRODUCTION 

Among the various forms of entertainment robotics 
robotic pool is emerging to be an intriguing and challenging 
problem. The game of pool demands high levels of percep- 
tion, strategy, and precision which make it ideally suited 
for the computational challenges of a robotic system, and 
pool is emerging as the “computer chess” of robotics. In 
the early work of Shu et al. [l],  a robotic gantry system 
was cousuucted to play snooker. Other work has tended to 
focus on high level strategy, independent of platform [Z]. 
Recently, an automated pool training system was developed 
131 which includes a machine vision component, but no 
robotic actuator. 

We describe the development of a system based upon 
a gantry robot, shown in Fig.1. The main elements are: 
a 5 dof gantry robot, a 1 dof cue end-effector, a ceiling 
mounted (global) camera, and a standard 4’x8’ pool table. 
There is also an end-effector mounted (local) camera, that 
is used here for calibration purposes, and that will be used 
in the future to compensate for positioning errors. One 
difference between our system and previous work is our use 
of an end-effector mounted camera to improve positioning 
accuracy. 

We are taking a bottom-up approach to the development, 
and our efforts have focused on issues of sensing and acm- 
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Fig. 1. System Components wilh Labcllcd Coordinale Frames 

ation. Our belief is that higher-level planning and strategy 
will be motivated and informed by solutions to the lower- 
level sensing and actuation systems. A fundamental issue 
is accuracy. It is possible to design a gantry robot that has 
fine-grain accuracy (-15pm) over the desired workplace. 
For example, Coordinate Measurement Machines (CMMs) 
have such accuracy over similar working volumes. This 
high degree of accuracy comes at a cost, however, and 
such a device would be expensive, delicate, and unlikely 
to maintain accuracy while absorbing the impacts required 
when placing shots. A more reasonable approach is to de- 
mand less absolute accuracy from the primary positioning 
device, and to rely upon a vision system for fine-tuning. 

In this work, we describe a method whereby a single 
overhead camera is used to improve the accuracy of the 
gantry on a plane. The method is validated experimentally, 
and is used as the basis to automatically pot (i.e., sink) 
balls. Sec.Il describes the problem as a mapping from 2D 
(camera) to 3D (robot) coordinates, and Sec.m presents a 
method to solve this mapping. This solution requires iden- 
tifying a set of circular targets in both the camera and robot 
frames, and Sec. IV, presents a process for locating these 
targets. An evaluation of the system accuracy is presented 
in Sec.V, and an experiment in automatic potting (i.e. ball 
sinking) is described in Sec. VI. The paper concludes in 
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Sec. VII with a summary and recommendations for future 
work. 

11. SYSTEM A N D  PROBLEM DEFINITION 

Let C be the global camera cwrdinate reference frame, 
and let R be the robot frame. A point ‘$=“(z, y: z )  in C 
is measured in pixel units ( U ,  v )  by its projection onto the 
camera retinal plane T. Coordinates in R are measured by 
the robot joint encoders, albeit with limited accuracy. The 
table forms a 3D plane II which can be described in either 
frame. 

The objective at this stage is to automatically pot a single 
ball. To achieve this goal we must perceive the position of 
the ball on II withim C, and calculate the correct location 
within R to reposition the cue and place a shot. We must 
therefore map coordinates which lie on lI from C to R; 

h:(u:v)-R(z:y:z) V ‘@EH (1)  

The function h is a 2D to 3D homography, which is a 
mapping that preserves collinearities and therefore maps 
between planes in the two frames. Homographies have been 
well-explored within the Computer Vision research com- 
munity [4], and the 2D to 2 0  homography is particularly 
useful in establishing correspondences between two camera 
frames. 

111. SOI.UlHON APPROACH 

A naive approach would assume that T, II, and the x-y 
plane of R are all parallel, and solve Eq.1 based purely on 
the geomeuy and scaling of their projections. It would in 
practice be difficult to ensure that these planes are parallel, 
and small deviations could result in large inaccuracies. It 
is also desirable for h to compensate for nonlinearities 
inberent in both the camera and the robot measurement 
systems. 

One possibility is to estimate h from a set of correspon- 
dences between the two frames. An alternative approach, 
which we take here, is to first estimate a 2D homography 
that relates II to C and R, and then apply the solution of 
the plane equation of lI in R. 

In general, at least 4 non-collinear p i n t  correspondences 
are required to compute the homography between two 
2D homogeneous spaces. In our case only the (.,U) 
camera frame measurements are in homogeneous coordi- 
nates, whereas the robot R@ = y x >  y: t) coordinates are 
measured in Cartesian space. The R f l  must therefore 6rst 
be mapped into homogeneous coordinates: 

This is equivalent to projecting these coordinates onto the 
plane at z = 1  in R, which we shall denote as Y. 

We compute the homography between R and SJ by 
placing a set of N 2 4  targets on lI. The targets are white 
circles printed on a black background, and the center of 
the z t h  target is determined as (vi: vi) in T and yx.: y, z ) ~  
in R. The homogaphy H is a 3x3 mamx estimated 
from these correspondences. For any subsequent position 

c) binary threshold 

Fig. 2. 

d) detected targets 

Locating Targels in C 

( u j :  t i i )  of target j on n, the least square error estimate of 
the corresponding projection onto e is then given by: 

Eq.3 describes the mapping between R and Q up to 
a scale factor. To satisfy Eq.1, however, we require an 
additional mapping from to lI, which we accomplish 
by making further use of the measured targets in R. The 
targets were positioned on lI, so the equation of Il in R 
can be determined directly from the A’ values of “R. 
As N > 3, the plane equation is calculated as the least 
squares estimate of these measured values. The $bj and wj 
determined from Eq.3 can then be substituted directly into 
the plane equation to solve directly for “(x,;yj;zj). 

IV. TARGET EXTRACTION 

Estimating H and 11 requires establishing correspon- 
dences between N >  3 target locations. The center of each 
circular target j is measured as a (uj, v j )  pixel location in 
li, and as an yx.; y, z ) ~  robot location in R. 

A. Target Extraction in C 
Prior to target extraction, the radial distortion of the the 

camera is estimated using a standard technique 151. All im- 
ages are corrected for radial distortion prior to subsequent 
processing as illustrated in Fig.Zb. A simple threshold is 
then applied to produce a binary image from the g a y  scale 
image. It can be seen in F i g 2  that the white circles of 
the 8 targets pass easily through the binary filter, but that 
some noise results. A connected components algorithm is 
applied next to remove the noise. Any components which 
are significantly larger or smaller than the expected target 
size are considered as noise and eliminated. After this step, 
the remaining components belong to a Vue target circle, as 
illussated in Fig. 2d. For each circle j ,  the edge points are 
identified and a least square error estimate of the center 
(uj,ui) is determined [ti] and used as a target location in 
6. 
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B. Target Exrmcrion in R 
Whereas determining target locations in C is straight- 

forward, determining the corresponding locations in R is 
more involved. To do so, it is necessary to position the 
robot accurately over a target j at a fixed height offset. 
The values of the robot's 6rst 3 joint encoders are then 
taken to be the target's 3D position in the robot frame, i.e., 

The challenge is to position the robot over the target as 
accurately as possible, One possibility is to mount a fixed 
pointing device, such as a pin, on the robot pointing down 
toward the center of the target. The robot could then be 
manually 'Ijogged" to position the pin at the center point 
and just touching the target. While this method is simple, 
it is imprecise, subject to human error, and prohibitively 
labourious when many target locations are desired. 

As an alternative, we employ a small camera mounted on 
the end-effector aimed down along the %-axis. The center 
and radius of a target as imaged from this camera is used 
to accurately position the robot over the target's center at 
a fixed % offset. 

I J Derennining the Cerirer of Rororion: We desire to 
position the robot %-axis directly over the target center. It 
is therefore necessary to identify the pixel within the local 
camera image plane that intersecs with this axis. 

This is accomplished by positioning the gantry roughly 
over a target and acquiring an image with the local camera. 
The robot is positioned in xyz using the first 3 proximal 
joints, with the distal revolute joints 4 and 5 in their home 
positions. The target center "(U, U), is extracted h.om the 
acquired image. 

Joint 4 is next rotated to at least 2 additional locations, 
and the target centers are extracted for each rotation. If the 
gantry were initially positioned such that '2 lay directly 
over the target center, then all K extracted centers would be 
equal, i.e., "(~,21),=~(~,~)2= . . . = I ( u ~ u ) K .  Otherwise, 
the K center points circumscribe a circle, the center of 
which is the intersection of % with the image plane of the 
local camera. 

l l i s  process is illustrated in Fig.3a using 3 rotations, 
which is the minimum required. Here, the 3 extracted 
circles A, B, and C have respective centers a, b, and c. 
The circle circumscribed by a, b, and c is centered at R, 
which is the center of rotation of robot joint 4, i.e., the 
intersection of % with ?i. In practice, it is both convenient 
and more accurate to use a larger number of rotations, and 

"(..Y:z)j. 

:: 
Rp. 4. Ermr VS. # of Ta~pel~ 

to estimate the circle center in the least squared sense (61. 
Using 21 rotations as illustrated in Fig.3b, the center pixel 
was identified with an accuracy of 10.1 pixels, or 0.04 
mm. 

2) x-y Posirioning: Once the center of rotation has been 
determined, the robot can be accurately positioned in x-y 
over a target center. First the robot is positioned so that the 
target is entirely imaged within the local camera, and the 
target center and radius are extracted. The robot is then 
repositioned in x-y by the difference between the target 
center and the previously determined rotation center. A new 
image can he acquired in the new position and the above 
steps repeated until the desired accuracy is achieved. In 
practice, we have found that it takes 3 to 5 iterations to 
achieve a positional accuracy of f0.3 pixels (0.1 mm). 

3) z Posirioning: Once the robat is positioned accurately 
in x-y, the z-offset of the robot can be determined from the 
target radius. First, the radius of the target at the desired 
z-offset is predetermined. The current observed radius ; is 
compared with the desired p. and the L value is adjusted 
accordingly. If; < p. then the robot is lowered toward the 
table: if p, then it is raised. This is repeated until the 
desired accuracy is achieved. In practice, we have found 
that it takes 5 to 10 iterations to achieve an accuracy of 
10.3 pixels (0.1 mm). 

Repeating the above x-y and L positioning processes, the 
robot can be positioned accurately over each target, and the 
values of joints 1 to 3 for each target j yield R(x, y, z)?. 
These values are combined with the corresponding target 
centers (x,.  U,) extracted from the global camera and are 
then used to estimate H and n in Eq.1. 

V. EXPERIMENT 1: ACCURACY MEASUREMENT 

The objective of this experiment was to characterize 
the positioning error. There are a number of random and 
systemic sources of error in the system, including: limited 
accuracy of the gantry controller; limited resolution of the 
global camera; inaccuracies in the estimation of the lense 
radial distortion; and numerical errors in the homography 
computation. 
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Pig. 5. I'olilioning Error Fig. 6. Positioning Eror  With Correction 

TABLE I 

P O S ~ O N ~ N G  I?RKOR (MM) 

The positioning error can be measured directly by a 
process similar to that described in Sec.IV. The target is 
placed on ll at a previously unmeasured location and its 
center (U;  U )  is extracted from the global camera image. 
Eq.1 is then used to compute the robot frame coordinate 
"(.: y: i) and the robot is repositioned to this coordinate. 
Once respositioned, the end-effector is centered over the 
target at a fixed height, and an image of the target is 
acquired from the local camera. The center of the target 
is extracted from this image, and is compared with the 
previously determined center of rotation. The offset be- 
tween these two values is the x-y positional error of the 
process. The same process described above to compare the 
extracted target radius can be reapplied to determine the 
z-positioning error. 

The estimation of H and the equation of IT was re- 
peated 6 times using 4,8, ... 32 respective target locations, 
distributed as evenly as possible over the extent of the 
table. While minimally 4 correspondences are sufficient to 
calculate H and 3 measurements for n, a more accurate 
least squares estimate can be obtained with a greater 
number of measurements. 

For each resulting estimate, the robot was positioned 
over another panem of 5 target locations using Eq.1 and 
the positioning error was measured as described above. The 
sum of the positional errors in each direction and the total 
error, as a function of the number of target locations, are 
plotted in Fig.4. Whereas the z error continues to decrease 
with increasing number of targets, the x, y, and total error 
are minimal for 12 locations. 

In a second stage, a robust estimation of H and ll were 
computed by selecting from the set of 32 target locations 
the subset of 23 locations with a reprojection error that 

TABLE I1 
POSiilOKLHG ERROR WITB CORRECTION ( M M )  

was less than a threshold value. Those points with a l"er 
reprojection error were believed to bias the result and were 
removed. The targeu were then placed at an array of 6x13 
(i.e., a total of 78) positions evenly spaced over the table. 
The robot was positioned above each target as described, 
and the positioning error was measured. Fig.5 plots the 
linearly interpolated distribution for the total error values 
as a function of their table location. The magnitude of the 
minimum and maximum errors, and the mean and standard 
deviation for each directional component of the error and 
the total error are also summarized in Table I. 

It can he observed that the error increases significantly 
over the lefhnost end of the table. The main reason for this 
behaviour is that these measurements were taken farthest 
from the gantry home position. The measurement errors 
and nonlinedies in the mechanism accumulate and are 
therefore more pronounced in this region. To reduce the 
effect of this cumulative error on the remainder of the 
table, the target locations in this region exceeded the above 
threshold value, and were discarded in the estimation of 
H and II. The resulting estimates extrapolate rather than 
interpolate over this region, and therefore have a limited 
accuracy therein. 

The major source of error is due to the limited accuracy 
of the gantry positioning mechanism. As this error is 
systemic and therefore repeatable, we can improve the 
positioning accuracy by using the estimate of this error 
as a correction term. The three directional components 
of the error were configured into functions that returned 
an estimate of the directional error value for every table 
position, and this estimate was added as a correction term 
to the each direction of the determined robot position. 
The above experiment was then repeated for the 78 target 
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a) without correction b) with correction 

Fig. 7. Local Camcra V i m  of Tagel 

locations using this correction term, and the new error 
measurements were plotted in Fig.6. It can be seen that the 
total error is significantly reduced using this new scheme. 
The errors for these plots are summarized in Table n. 
Comparing against the corresponding values in Table I 
it can be seen that the maximum, mean, and standard 
deviation of the total error has been significantly reduced. 

The benefit of the use of error correction can be seen in 
Fig.7. The target was placed on the table and its center was 
extracted in the global camera image. The robot was then 
positioned over the target using the coordinate calculated 
from Eq.1. Fig.7a shows the target view from the local 
camera when the error correction term was not used. 
The expected target location and radius was overlayed in 
the image, and the positioning error from the true target 
location can be clearly seen. In Fig.7b, the robot was 
repositioned using the error correction term. It can be seen 
that the overlayed expected location and radius match the 
true position much more closely when the correction term 
is used. 

VI. EXPERIMENT 2: AUTOMATIC P O T I I N G  

At this stage, our goal is IO pot a single bail (the cue ball) 
into a specific comer pocket. This is known as a srrufch, 
and is an illegal shot by most rules. It is; however, the most 
basic skill in pool, and once mastered will lead directly to 
more complex shots involving object balls. 

The experiment will evaluate how accurately the system 
can automatically pot the cue ball into the target pocket 
at various distances and angles. We h t  manually select a 
pixel point (U; U), in the global camera image at the center 
of the "jaw" of the target pocket. This point indicates the 
target pocket location. The cue ball is then identified in 
the global camera image using the same process as the 
circular target extraction described in Sec.N. The cue ball 
center location ( U , U ) ~  and (u,u)t are both mapped into 
their respective R coordinates, "(.: y: z ) ,  and "(+: y; z ) ~ ,  
using Eq.l._The R vector connecting these two points is 
denoted as V,,, and indicates the direction from which the 
cue should strike the ball. 

To place the shot, it is necessary to position the cue at 
a specific fixed heigh: above the table, at a certain k e d  
offset distance along V,, from yx.: y, z ) ~ .  The fixed height 
and offset distances were predetermined manually so that 
the cue would strike the ball after it has accelerated to 
the desired strike velocity. In human play, it is common 
for the cue to have a slight downward angle when striking 

Fig. 8. Motion Scqucnce When Placing Shot 

the cue ball, and so the cue was angled slightly from the 
horizontal by adjusting joint 5 .  This configuration had the 
benefit of allowing the end-effector to clear the table rails 
without colliding as shown in Fig.Pd. The offset distance 
was selected to be large enough so that the cue tip did not 
touch the table surface at the end of its travel. 

Once the robot position was calculated, the robot was 
repositioned using a sequence of trapezoidal motions, as 
illustrated in Fig.8a-f. This sequence was designed to 
position the robot correctly without colliding with the rails 
or the cue ball prior to placing the shot. Starting from the 
home position (a), the robot is raised to its maximum z- 
height and repositioned in joints 1.2,4, and 5. This placed 
it in the correct x,y location with the correct shooting 
angles, raised above the table (b). The robot next drew back 
the cue and lowered in z (c), and placed the shot (e). If 
the positions were calculated correctly and the positioning 
accuracy sufficient, then the cue ball should sink into the 
target pocket (0. 

The cue ball was placed at a variety of positions on 
the table, and the success with which the system potted 
was recorded. The shots where taken at a single moderate 
striking velocity of 1 d s ,  which is approximately 113 of 
the cue's maximum strike velocity. For each location, three 
separate shots were placed, and the results of these exper- 
iments were summarized in Fig.9, where the o symbols 
indicate the table positions that resulted in successful pots, 
and x indicate those positions that resulted in failed pots. 
Overall, the system had a success rate of 67%. potting 44 
of the 66 shots. The shots that were not successful occurred 
more frequently in certain regions of the table, away from 
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Fig. 9. Potting RCSUIIS. I m/s (a=pot, x=mins) 

the central corridor, and were not panicularly strongly 
correlated with distance from the pocket. This is indicative 
of a remaining systemic error in the gantry positioning, 
and indeed there was a noticeable and repeatable offset 
when the gantry was positioned in the regions of the table 
adjacent to the target pocket, i.e.. the lower regions of 
Fig.9. 

This experiment was repeated for a striking velocity of 
2 d s ,  and the results plotted in Fig.10. The panem of 
successful pots is very similar to those in the previous 
trials, with the number of pots dropping toward the edges 
of the table. It was expected that the success rate would 
tend to drop with a higher striking velocity, as tends to 
occur in human play. This was not observed. however, 
and indeed, it was noticed that the success rate in the 
lower extremity of the table actually increased 31 the higher 
velocity. The explanation is that that the slight positional 
inaccuracies over this table region imparted a spin on the 
hall, which was beneficial to the shooting direction, and 
therefore increased potting success. 

VII. SUMMARY A N D  FUTUHE WORK 

Pm1 is a game that requires a high level of positional 
accuracy. Despite its popularity and long history, there 
exists no information about the positioning accuracy that 
is required to play effectively. Without an a priori accuracy 
constraint, the approach that we have taken is to implement 
the system based upon a general gantry robot, determine 
its potting performance experimentally, and iteratively im- 
prove the accuracy until a suitable level of performance is 
achieved. 

In this work, we have improved the accuracy of a gantry 
using a calibration technique based upon an overhead 
global camera, and an end-effector mounted local camera. 
We have demonstrated that the resulting accuracy is suf- 
ficient to pot a single ball reliably over celtain regions of 
the table. The high degree of repeatability makes it likely 
that the system would be extremely reliable at potting in 
these regions. 

Our experiments also show that there are some regions 
of the table over which the gantry accuracy is insufficent 
tu reliably pot with the given setup. One possible course 
of action could be to improve the accuracy by revisiting 
some of our assumptions. For example, we are currently 

Pig. 10. Polling Resulls. 2 m / s  (o=pot, xsmiss) 

modelling the robot coordinate frame as a Cartesian system 
with a linear non-parametric correction term. It may he 
more suitable to develop a higher order parametric estimate 
of this error term. Rather than one overhead camera, it may 
also be beneficial to use two or more cameras, each with a 
longer focal length, which therefore resolve the target and 
ball locations to a greater precision. 

An alternative approach to improve accuracy is to make 
use of a local vision system mounted on the end-effector. 
The role of the global vision system would then be to 
identify the hall locations in the table coordinate frame, and 
the local vision system would correct for gantry positioning 
errors by comparing the locations of the balls in the local 
image with their known positions in the table frame. In 
this way, the gantry positioning system requires only a '  
limited accuracy, which is more than likely satisfied ushg 
the techniques presented here. 

Potting object balls is similar to the process described 
here, but requires greater positioning accuracy. In the 
future, we plan to implement the local vision sysiem to 
improve positional accuracy. We will also implement a 
ball identification method based upon color indexing, and 
collision detection. Beyond that, developing a competitive 
system will require research into the physics of cue, ball, 
and table interactions 171. and strategy. 
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