
Phys Educ 1(1(1991) PrintedintheUK 

Frontal impact of rolling spheres 

A Domenech and E Casasus 

A model ol Iha InelasWc colllslon between lwo 
spheres rolllng along a horlzontal badr Is pre 
senled, taklng Into a a w n l  the etfects of frldlonal 
forces at Impact The slmple experlment dek 
crlbed makes posslble dlred eslfmates of the 
coefflclents of restlMlon and frldlon. 

Experiments on collions are usually employed 
as examoles of the laws of conservation: in oar- 

expressed in terms of normal and tangential impul- 
sive forces, as depicted in figure I .  The tangential 
impulsive forces will be considered as frictional 
forces acting during the time interval of impact. 

If we denote by v, (j= 1,2) the velocities of the 
centres of mass of the spheres immediately after 
impact, then conservation of momentum can be 
expressed by 

mlui +m2u2=mlv ,  +m2v2 (1) 
ticular, frontal and oblique collisions between where m, (j= 1,2) are the masses of the spheres. On 
rolling spheres have been frequently referred to in 
physics texts. The simple approach to the problem the other hand, the inelasticity of the impact is 

expressed in of the coefficient of restitution, of colliding spheres assumes that no rolling occurs 
and omits the effects due to the frictional forces at e,  by the equation 

impact. In this paper, we attempt to develop a 
more general approach to the problem of the 
frontal collisions between rolling spheres. It takes 
into account the inelasticity of impact and the 
frictional forces acting throughout the collision. 
These are expressed, respectively, in terms of the 
coefficient of restitution, e,  and the coefficient of 
sliding friction, p, in accordance with the general 
formulations of the two-body collision prnhlem 
(Zukas 1982, Kane and Levinson 1985, Brach 
1984). A simple experiment to verify the theoreti- 
cal predictions of the model is described. This 
experiment leads to direct estimates of the coeffi- 
cients of restitution and friction and illustrates the 
transition of rolling spheres from pure rolling to a 
combination of rolling and sliding. 

Theory 

Impact of rolling spheres. Let us consider two 
spheres, labelled 1 and 2, of equal radius, Rb, that 
collide while rolling along a horizontal rectangular 
track, with initial velocities U, (j= l,2). At impact, 
each sphere is assumed to exert an impulsive force 
on the other at the point of contact, which can be 
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v2-vI=e (u1-u2)  (2)  

in which we assume, explicitly, thai e is a con- 
stant that depends only on the materials of the 
spheres. This is a simplification valid under certain 
conditions (Goldsmith 1960). 

Introducing the ratio of the masses, M, defined 
as M = m l / m 2 ,  weobtainfromequations(l)and(2) 
for the ve!ocities jus? after !he impact: 

(3) 
M - e  I + e  

vi=- 
I + M ul+ 1+M & 

(4) 
l + e  1-eM 
I + M  1 + M  v2 = M- U,+- u2. 

The frictional forces must cause a change in the 
angular velocities of the spheres, from their initial 
values, uj/R., to the values oj after the impact, 
which can be deduced from the integration of the 
equation 4 doj= *pRgnj  dv,, in which I j=  2mjR;/5 
represents the momen! of inertia of each sphere 
(j= 1,2) and p the coefficient of sliding friction 
between them, which is also regarded as a constant 
characteristic of the materials, and independent of 
velocity. Re is the effective radius of each sphere, 
defined as the distance from its centre to the plane 
of contact with the track (see figure 2) ,  that can 
leasily be calculated from the radius, Rb, and the 
groove width, a, as R . = [ R ~ - ( O / ~ ) ~ I ~ ' ~ .  
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Figure 1. Schematic 
diagrams illustrating the 
frontal impact of rolling 
spheres. 

sions depends on the direction of the frictional 
force, given, in turn, by the sign of vJ- w,R.. 

By integration of these equations we can obtain 
the velocities of the spheres at a time 1, corres- 
ponding to a combination of rolling and sliding 
motions. The pure rolling motion is reached when 
v,=oj%; therefore, the values of the velocities, vi", 
will be (introducing the ratio R=R,/Rb) 

i 

Figure 2. Experimental arrangement and cross- 
sectional view of the sphere on the track. 

(7) 1 5 I+e 
2 I + M  

+ -R-(R+p)Uz  ( I+%Rz) - I  

Thus. we can obtain 

Since w,# vJ/R. it is obvious that, in general, the 
motion of the spheres after impact will be a combi- 
nation of rolling and sliding. 

From the above equations, the case in which one 
of the spheres is initially at rest can be described by 
making U, (or u2) equal to zero; it is interesting to 
note that for an elastic collision (e= I )  between 
spheres ofequal masses (M= I) ,  equations ( I )  and 
(2) predict, respectively, v,=O and v2=uI, i.e., the 
balls interchange their velocities, as is frequently 
cited in general textbooks. The impact of a rolling 
sphere against a vertical rigid surface is described 
by putting the ml/m2 ratio to zero; as expected, the 
model predicts that v ,  = -ill for an elastic collision 
with a rigid harrier. 

X ( I  + 5hR2)- I 

at times after the impact Iz= l * ( l -  5pR/2)/p; and 
I,= l*M(I + 5pR/2)/p\, where 

(9) 
R(I + e/l + M)(u, - uz) 

g(l +%R2)  
,*= 

Notice that the coefficients of friction between 
the spheres and the track are absent from equations 
( 5 )  and (6). which can he obtained directly by inte- 
gration of 1, doj=  -Rem,; dv,. It should be noted 
that in this treatment we have neglected the roll- 
ing friction terms required in more detailed 
approaches to the problem (Domenech et a/ 1987). 

Experimentel procedure 

Verification of the model has the intrinsic difficulty 
associated with the experimental determination of 
the velocities, requiring relatively complicated 
equipment. To overcome this difficulty we can 
study the case in which one sphere collides with 
the second sphere (initially) at rest. The bails 
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Motion of the spheres after the impact. After the 
impact, the frictional forces acting between the 
balls and the track cause changes in the linear and 
angular velocities given respectively by mj dvj/dl= 
&p,!mjg(Rh/&) and ti doj/dt= +p,!RcJg(Rh/Re) ,  
where p; denotes the coefficient of friction of the 
j-sphere with the track. The sign in these expres- 



collide on a rectangular track placed on a labora- 
tory bench, with the lower end of the track flush 
with the edge of the bench. After moving off the 
track the balls fell through the air, finally striking 
the floor at a horizontal distance x and a vertical 
distancey from the end of the track. 

The points of impact of the balls with the floor 
can be determined using carbon paper. Neglecting 
air resistance, the trajectory is a parabola of form 
y=gg/2$, and so the velocity of the sphere at  the 
end of the track can be calculated from the 
distances x and y. 

For simplicity, we can obtain the ratios v , / u l  
and v2/uI directly from measurements of the hori- 
zontal distances covered by ball 1 without impact 
(xo) and by the balls 1 and 2 after the impact 
(xI,x2). Obviously, the velocity of the incident 
sphereat impact, uI, must beconstant; this require- 
ment is accomplished by using a slanted auxiliary 
track placed over the horizontal grooved track. 

When the experiment was carried out, the stu- 
dents found a relatively surprising result: the ratios 
of the velocities depended on the location of the 
point of impact of the spheres with respect to the 
end of the track (see figure 2). This fact can be 
explained in terms of the transition from the initial 
rolling and sliding motion of the spheres to the 
pure rolling motion due to friction with the track. 
Thus, the ratios of the velocities must vary from 

v,/ul = (M- e)/(l+ M) (10) 
vz/ul = M( 1 + e)/( 1 + M) (11) 

immediately after the impact to 

5 I + e  5 , M - e  
V ; ~ / U I  = 1 - - FR ~ + - R  -) ( 2 l + M  2 I + M  

(12) 
x ( I  +?4R2)- '  

corresponding to the pure rolling motion. Equa- 
tions (IO) and (1 l )  imply that the distances, d,, of 
the spheres from the end of the track are zero. 
When the distance d; is larger than a given limiting 
value, d), pure rolling motion obtains, and the 
velocities of the spheres will be described by equa- 
tions (12) and (13). For intermediate distances 
(0 < di< d,!) the square of the velocities must be 
linearly dependent on the distanced,, i.e. 

vj(d;)= vj(d,= O)* 2pt;gd,/R. (14) 

Once pure rolling motion has been reached 
(dj> d)) the velocity of the spheres along the track 

1 ea 

remains practically constant. Deceleration due to 
rolling friction and air resistance are negligible 
given our experimental conditions. 

Results and dlscusslon 
Aluminium, brass and steel spheres of 2.50cm 
diameter were employed in collisions on an alu- 
minium track with groove width l.00cm. The 
velocity of the incident ball was adjusted to 
0.75f0.10 m s- '  by using a coupled slanted track. 
The end of the horizontal track was placed at a 
height of 75 cm above the floor. The data were 
obtained by varying the distance d and measuring 
the horizontal distances xo, xlr x,, covered by the 
spheres. Experiments were repeated five times in 
order to obtain the xj distances; in all cases, the 
dispersion of the xi values was less than 2%. 

The experimental results agreed satisfactorily 
with the proposed model under our experimental 
conditions. In figure 3 we have plotted the values 
of xj/xo in terms of the values of dj for the col- 
lisions between steel (s), brass (b) and aluminium 
(a) spheres, in all c a m  with M = l .  As can be 
observed, the ratio xl/xo remains practically con- 
stant while the ratio x2/xo decreases when the 
distance d2 increases, until an abrupt change 
occurs for a distance d:, when pure rolling motion 
commences. 

Figure 3. Plots of the experimental values of x,/% 
vers~s  the distances d. for the ColllSlOnS 01 donerent 
pairs o! spheres 
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Table 1. Coefficients of restitution and friction determined for several pairs of 
soheres. 

Moferiols (1-2) M e  )I I4 
aluminium-aluminium I .OO 0.69 ~k0.02 0. I7 +O.M 0.17 f0.03 
brass-brass 1.00 0.722Z0.02 0.16&0.04 0.16*0.03 
steel-steel 1.00 0.9510.02 O . l l + O . O 3  0.15*0.03 
brass-steel 1.05 0.7210.02 0.14+0.04 0.15*0.03 
brass-aluminium 3.16 0.61*0.02 0.1210.03 0.15*0.03 
steel-aluminium 3.01 0.552Z0.02 0.1410.03 0.16+0.03 
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FlgureQ. Graphical representation of (xC/&)' versus 
4 for t h e  collisionsof brass-aluminium (A), 
steel-aluminium (8) and brass-steel (C) spheres. 

As shown in figure 4, ( X ~ / X ~ ) ~  vanes linearly with 
d2, for small values of this distance, allowing e to 
be obtained from the intercept using equation (1 1 )  
and (1; from the slope using equation (14) in the 
corresponding least-squares adjustment. 

For distances dz>dk, the quotient xJx0 remains 
practically constant, as can be seen also from 
figures 3 and 4. This limiting value of x2/xo permits 
an estimate to be made of the coefficient of friction 
between the spheres, inserting into equation (13) 
the value of e previously calculated. 

For ball 1, only the rolling motion is recorded, 
as shown in figure 3. The experimental values of 
X ~ X O  are in excellent agreement with those calcu- 
lated by substituting the above values of p and e 
into equation (12). This fact provides further sup- 
port for the validity of the model. The values of the 

coefficients of restitution and friction calculated 
for several pairs of materials are listed in table I .  

The students can compare the experimental 
results with successive theoretical formulations 
of the problem. Thus, in a first step, the solution 
of the equations of the frontal elastic collisions 
without frictional effects can be obtained. In a 
second approach, the inelasticity of the impact is 
included, yielding a satisfactory description of the 
velocities immediately after the impact. Finally, 
frictional effects between the spheres and in the 
sphere-track contact are incorporated into the 
model to account for the observed results both 
qualitatively and quantitatively. 

Concludlng remarks 

The study of collisions exemplifies one of the most 
significant aspects of the scientific methodology: 
the introduction of successive approaches to a 
general model to obtain progressive improvements 
in the description of a particular problem. 

The present formulation can be considered as a 
plausible description of the frontal impact of 
rolling spheres, and allows a simple mechanics 
experiment illustrating the classical laws of impact 
and friction, yielding rapid estimates of the coeffi- 
cients of restitution and friction. In addition, the 
transition of a rolling sphere from pure rolling to a 
combination of rating and sliding can also be 
studied. 
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